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Abstract

This thesis is about the use of registration algorithms for navigation of a mobile robot.
Generally, the use of these algorithms for the localization and a modification of the nav-
igation system are examined. The Lib3D framework of the Robotics and Machatronics
Center of the DLR serves as experimental evaluation environment. The main goal here is
to improve the navigation through narrow environments. In the current state the robot
often corrects its position a few times until it drives through the narrow environment.
Through a more accurate pose estimation the uncertainty before driving through a nar-
row environment should be lowered. So the robot can try alternative ways to not move
and relocalize again. The used registration algorithms have already been implemented
in the Lib3D framework. A concept is created that depicts how the algorithms should be
applied and evaluated, in order to find the best one, which can be integrated into Lib3D.
This concept serves as a rough plan for the implementation. Soon in this implementation
it turns out that the ICP is the best choice for the integration. It is integrated into the
navigation system of Lib3D and an exact evaluation is performed. On the one hand the
ICP is mostly more accurate, on the other hand the results vary strongly, what makes
them less meaningful. The Conclusion is that a good statement about whether the ICP
should be used or not can not be made at this point. Further examinations are necessary.



Zusammenfassung

Diese Arbeit behandelt die Auswirkungen des Einsatzes von Registrierungsalgorith-
men auf die Navigation eines mobilen Roboters. Hauptsichlich geht es dabei um den
Einsatz dieser Algorithmen in der Lokalisierung und eine Modifikation der Navigations-
komponente des Lib3D-Frameworks des Robotik und Mechatronik Zentrums des DLR.
Speziell geht es darum, dem Roboter die Fahrt durch eine enge Stelle zu erleichtern.
Mit der momentan implementierten Monte Carlo Lokalisation korrigiert der Roboter
seine Position oft mehrere Male. So soll durch eine genauere Lokalisierung mithilfe der
Registrierung die Unsicherheit vor dem Befahren der engen Stelle kleiner werden. Das
soll dazu fiihren, dass dem Roboter mitunter alternative Fahrmandver geboten werden,
sodass er seine Position nicht erneut korrigieren muss. Die in Frage kommenden Reg-
istrierungsalgorithmen sind alle schon in dem Lib3D-Framework implementiert. Es wird
ein Konzept erstellt, wie die Algorithmen angewendet und bewertet werden, um spéter
eine Entscheidung zu treffen, welche sich fiir die Integration in Lib3D eignen. Danach
wird anhand dieses Konzepts die Implementierung beschrieben, bei der sich friithzeitig
herausstellt, dass der Iterative Closest Point Algorithmus bis jetzt die beste Wahl ist.
Er wird in die Navigationskomponente von Lib3D integriert und getestet. Abschlieftend
wird die Anwendung des ICP in Lib3D ausgewertet. Zwar ist die Lokalisierung mit dem
ICP oft genauer, doch andererseits variiert sie sehr stark, wodurch die Aussagekraft der
Auswertung kleiner wird. Eine generelle Entscheidung, ob der ICP an der Stelle sinnvoll
eingesetzt ist, kann also nicht gefillt werden.
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1 Introduction

In the industry mobile robots today are about to step over the edge of being only research
projects. They are on the way to become good applicable, reliable and safe systems that
help human workers.

A key factor of mobile robots is their navigation system. The mobile robot navigation,
as it is relevant for this thesis, consists of 3 tasks: localization, path planning and path
executing. There exists another view that navigation is also the processing of a request of
an external instance to go to a certain point or area [10]. But this is a very high level task
and is not covered in this thesis. Furthermore, there is a distinction between global and
local navigation. According to Batalin et al. [3|, global navigation is the overall planning
of the path from a start position to a goal position that may not be seen directly by
the robot. A map of the global environment is necessary here. Local navigation is the
steering of the robot in the near environment at the current time. What is near depends
of the properties of the robot and its setting and has to be determined in respect to
possible scenarios. Another important characteristic is that the navigation in this case
typically is not complete (except for the case where the robot steers directly to its goal
pose).

A very challenging part of local navigation is to drive the mobile robot safely, especially
collision free, through a narrow area. Why this is so difficult can be observed when
humans try to carry a bulky freight through a narrow door that is just wide enough.
The humans do this very slowly and carefully intuitively. Collision free carrying is the
ultimate goal here on the one hand. On the other hand humans suffer from uncertainty
and inaccuracy. They want to be able to stop before a collision happens, even if they
cannot observe all edges of the bulky freight simultaneously and their movements are not
infinitely accurate. That explains why they become so slow. But humans mostly find a
good compromise between velocity and safety.

Mobile robots suffer from uncertainty and inaccuracy, too. To respect that, mobile
robots often become very slow, like humans in the situation above, when driving through
narrow areas. That was observed by the author when working with a Pioneer 3 robot with
the ARIA framework. When it traveled through door frames it became relatively slow.
But even with relatively high side clearance (the clearance right and left of the robot to
an obstacle) to the door frame the robot became very slow. The problem was not only the
door frame itself, but also the high uncertainty of the robot localization. The simulation
of the KUKA omniRob of the Robotic and Mechatronics Center (RMC) of the German
Aerospace Center (DLR) shows problems, too, even though with a different behavior.
If it is located before the narrow area (a simulated door frame) through that it should
drive, it mostly relocalizes and moves again. That happens because the coordinates of
its pose estimation are not close enough to a temporary goal. But the robot has to be



very precise at this point because the path to the next temporary goal goes through
the narrow area. So the robot often needs a few attempts until it is accurate enough.
What both situations have in common is the uncertainty of the pose estimation that is,
amongst others, slowing down the driving velocity or forces the robot to move closer to
the current way point. It seems that a more accurate pose estimation could help to solve
this problem and to find a better compromise between velocity and safety.

1.1 Goal

A common localization technique of mobile robots today is the Monte Carlo Localization
(MCL) |11]. It became very popular because it is fairly accurate and robust enough for
most good accessible areas. However, the given examples above work with the MCL and
show that it sometimes is too inaccurate for the conditions of a narrow area. The idea of
this thesis is to focus on the application of registration algorithms in combination with
MCL while moving through narrow passages. One main task is to analyze the impact
it has to the pose estimation and thus to the navigation system of the robot. If the
registration algorithms will make the average pose estimation on each step more accurate,
the navigation system will be changed to benefit from the more accurate estimation.
The goal is to improve at least one of the two aspects:

1. Collision free driving

2. Driving velocity and run time of the navigation algorithms.

The driving velocity and the run time of the navigation algorithms can depend on
each other: It may be that the robot stands still on a place and waits for an excessively
long running algorithm so that it loses time at that moment. The time the robot needs
may also be outperformed by later time savings because of a more accurate initial pose
estimation.

Dynamic environments will not be treated here.

1.2 Structure

The structure of this thesis is as follows: first the fundamentals of this thesis will be
described, including related work, a description of registration and the used soft- and
hardware. Then, the algorithms for the application will be introduced and a concept will
be developed for extracting and converting data and using the algorithms. After that,
the actual implementation of this concept follows. Finally, there will be a conclusion,
evaluating the three depicted ways of registration. The runtime performance, speed of
the robot and the applicability by comparing all with the MCL will be analyzed.



2 Related work

Registration or scan matching in mobile robotics is mainly the matching of two shapes,
which have to be partly or fully overlapping. The terms registration and scan matching
are equivalent in this thesis. The shapes usually are either 2-D or 3-D, depending on
the sensors and their arrangement in the space. In this thesis 3-D data will be used for
the registration. The navigation of the robot, in contrast, will be 2-D. Two registration
algorithms will be used.

A widely used registration algorithm is the Iterative Closest Point algorithm (ICP)
[4]. The ICP is a local method for matching and aligning two shapes. So an initial guess
of the pose of the data is necessary. Rusinkiewicz and Levoy provide an overview of
efficient variants [9]. Another used algorithm is the Monte Carlo Registration MCR [6].
It is a global registration method that is intended to work with reduced and classified
feature points of a template and data set. It searches the complete rotational space for
the most accurate match of template and data and then determines the translation. The
search of the rotations is performed by a particle filter. A reduction drops the majority
of the points and only the most important ones remain. Correspondences between two
points are only assigned if the points belong to the same feature class. This minimizes
the runtime of the algorithm.

Scan matching to improve the pose accuracy has already been used with 2-D data.
Rowekdmper et al. [7] propose a scan matching approach with the ICP, by taking the
position guess of the MCL as initial pose estimation. The results are promising, the error
of the system never exceeded 17mm/0.53 deg at all, even not in dynamic environments.
Most of the times the position error was only a few millimeters. Scan matching is used
to improve the accuracy of an already roughly reached pose. After reaching that pose, it
is not of importance anymore. In contrast, the proceeding described in this thesis should
improve the accuracy of the estimated pose to enhance the driving of the robot to a next
goal. Also, the idea in this thesis is to integrate the out coming data of the scan matching
process back into the MCL so that new particles can be sampled. Another difference is
the measurement of the real robot poses for the evaluation. Rowekdmper et. al. use an
external precise motion capture system, while the measurement used in this thesis will
be based on the data provided by a simulation.






3 Fundamentals

This chapter will list the programming tools, the frameworks and the simulated hardware
that this thesis relies on.

3.1 Programming tools and frameworks

The programming language was C++-. The tools used for creating and modifying source
code were a DLR version of Eclipse and the gcc for compiling. The most important
frameworks for this thesis were the Lib3D, OpenCV and the BOOST Test Library.

Lib3D

The framework used for solving the robotic tasks was the Lib3D (L3D) framework, de-

veloped by the DLR-RMC. It is a robotic framework providing storing and processing

of data from a mobile robot and its environment and many related tasks. Especially,

it contains some of the most important components for mobile robotic tasks: Local-

ization, path planning and execution, mapping and sensor simulation. It also contains

implementations of the important algorithms used in this thesis, the ICP and the MCR.
The navigation system of L.3D is organized by several steps:

1. At first, a graph, based on the map, is generated, that contains a set of possible
way points for the trajectory of the robot.

2. The robot localizes itself with the MCL.

3. Then an optimal path is searched along the way points of the graph and the first
way point is set as current way point.

4. The robot tries to move to the current way point, then localizes itself and checks
whether it is close enough to the current way point.

5. If it is not close enough, it tries to move closer to the current way point and
continues with step 4. Otherwise it goes on with step 6.

6. If the current achieved way point is the goal, the navigation is done and the program
returns. If not, the robot sets the next way point as current way point and continues
with step 4.

Two poses are essential in mobile robotics and have to be considered: The real pose of
the robot and the pose estimation of the robot. The pose of the robot in the real world is



usually unknown since there is no way to receive it directly. If the robot is simulated, as
is always the case in this thesis, the real pose is known. Hence it will be called SimPose
because it is generated by the simulator. The estimated pose will be called MLPose from
then on. It is the Maximum Likelihood estimate of the MCL. Generally, there could also
be other localization algorithms than the MCL which is used in L3D. The robot perceives
the environment through the sensors and then estimates its pose with the MCL, which
is using sensor data. The pose accuracy depends on many factors such as the underlying
algorithms, the sensor and map data quality, sensor calibration, the structure of the
environment and the sensor coverage of the environment, to name a few examples.

L3D contains several data types for data storage. Most algorithms that are imple-
mented in L3D use this storage types. On of them is the point storage, which stores
points and is required for the ICP, for example.

BOOST Test Library

The BOOST Test Library is a unit testing framework that was used for testing some
parts of the newly developed components for this thesis. It is part of the BOOST library
and, amongst other things, supports easy test case implementation, test suites, fixtures
and can expect exceptions [8].

OpenCV

OpenCV is an image processing framework for multiple platforms that has a C++ inter-
face, amongst others |2]. In this thesis a combination of Blur, Canny and Dilation filters,
applied in this order, was used. The Canny filter can detect edges in an image.

3.2 Mobile Robot Environment

The Mobile Robot Environment, hence called MRE, is essential for this thesis. It relies
on the L3D framework and forms the basic user interface for working with a robot or its
simulation. It is a C++ project that assembles all the necessary parts of the framework
together. The simulation is one of the possible modes to execute MRE. While the MRE
is starting, parameters can be passed to set additional features or to let the robot perform
certain tasks.

A separate viewer exists to make the robot and its environment visible.

3.3 Simulated hardware

The hardware on which the MRE should run in the future is the KUKA omniRob. It
is an omnidirectional mobile robot that serves as research platform. As can be seen in
Figure 3.1, it has a light weight robot arm for manipulation purposes. The standard
sensors are 2-D laser scanners. The omniRob has been extended DLR. One of these is
fundamental for this thesis: It has 8 additional depth sensors, each with a 64 x 50 pixel
resolution.
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Figure 3.1: The KUKA omniRob without (left) and with (right) the modifications of the
DLR. Source: DLR internal






4 Concept

This section proposes three solutions to the problem of making the position estimation
more accurate. It will also propose a plan for the data acquisition as well as the steps
that will be made until the evaluation can be done in MRE. Then it will describe how an
optimization of the navigation system can be achieved with the help of a more accurate
pose estimation.

4.1 Registration approaches

The three proposed approaches are mainly chosen as the underlying algorithms were
already implemented in the L3D framework. It shall be examined whether the pose
estimation becomes more reliable and accurate by the application of them. Furthermore,
the impact the approaches have on the behavior of the robot shall be evaluated.

1. The first approach consists of the ICP. The necessary initial pose estimation can
be delivered by the MCL. Because the robot translations are only in 2-D, an ICP
variant will be used that only takes rotations around the Z-axis into account.

2. Another approach is based on using the MCR.

3. The third approach uses feature detection directly on the depth images. After the
features are detected, either the MCR, or the ICP can be applied for the position
estimation.

4.2 Retrieving the data

In general, all algorithms need two data sets: the known template data from the map
and the sensor data.

The template data is always a point cloud of the narrow area of the test environment
(Figure 5.1). It already fits for the ICP that only needs a plain point cloud. Additionally
the MCR is optimized for (reduced) feature points, so its point cloud template gets extra
treatment to extract feature points. Afterward the feature points may be reduced.

The first possibility to get point clouds from the model is to sample points randomly on
the surface of all polygons. A second possibility is to simulate depth sensor measurements
of the polygon model. Generally all data sets have to be cropped so that only the points
near and in the narrow area retain. This enhances performance and also sets the focus
only on the narrow area.
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Finally, the sensor data for the matching process has to be retrieved. This is also done
by simulating depth sensor data. To create a realistic simulation, it has to be inaccurate.
Otherwise the registration would not make any sense. For best results the depth images
are taken out of the robot simulation in a run of the MRE. Since they contain the real
coordinates, they get the coordinates of the current MLPose, as if the robot created the
measurement on the basis of the MLPose.

4.3 Application of the algorithms and rough evaluation

Because the data often has to be transformed and converted before it is ready to use,
several binaries have to be used to make the data fit to the final algorithm. For example,
before a depth image can be matched with the template data by using the ICP, it has to
be converted into a point cloud first. To check how well the ICP performed, the output of
it, a transformation matrix, has to be applied to the depth image. Then the differences
can be shown in a viewer program.

The rough evaluation is done by visual inspection of the result compared with the
template data in a viewer. As a result there shall be one or more algorithms that fit best
for this problem.

4.4 Integration into MRE

The algorithms resulting from the rough evaluation will be integrated into MRE, together
with the enhancements of the navigation system. The MRE is will not only be used with
the simulation but also with the real robot, which weights almost 400 kg. Furthermore
other people at the DLR-RMC will work with the MRE and thus with the created
software. So there are certain requirements for components that are developed:

1. Functionality: The program has to fulfill the functionality, in this case the regis-
tration and the enhancement of the navigation system, correctly.

2. Stability: Software crashes have to be avoided at all time. Especially when the
MRE runs on a real robot, crashes and bugs can have catastrophic consequences.

3. Changeability: The algorithms can be changed and replaced easily, even at runtime.

4. Maintainability: The source code of the components can be easily understood, so
that small changes and debugging can be done with minimal costs.

5. Testability: The components can be tested with minimal costs, for ensuring the
functionality and for comparing the algorithms.

Point 1 and 2 can be achieved by using unit tests, even though it is (nearly) impossible

to achieve error-free code. The use of the design pattern Strategy provides points 3, 4
and 5 because it encapsulates the whole algorithm and makes it interchangeable [5]. How

12



it does this will be discussed in detail in section 5.4. Documenting the code properly is
very important for point 4.

The template data for the narrow areas will be stored with global coordinates. So it
can be used like a global map. If the registration algorithm is applied, this template
will be passed to it, together with the sensor data and the current estimated MLPose
from the MCL. The registration algorithm should try to match the sensor data with the
template. The resulting transformation will be applied to the passed MLPose which will
be passed back to the particle filter of L3D again.

For all the algorithms described so far, the decision has to be made in every step,
whether one of them should be applied or not. To reduce CPU run time and power con-
sumption, the algorithms should only be applied when the robot is near the narrow area.
Figure 4.1 shows the movement-update cycle of MRE with the registration algorithm
option: as initial guess of the pose, the MCL is used. It returns the MLPose that is
used as input if the registration algorithm shall be applied. If yes, then the registration
algorithm takes that position and returns a new position that shall be more accurate.
If not, the movement-update cycle goes on normally and the pose of the MCL remains
valid as the most accurate one.

[™>] Localization

Near narrow area?

Registration Algorithm

Movement Goal reached?

Figure 4.1: A simplified diagram of the integration of the registration algorithm into the
MRE.

To evaluate the impact of the newly used registration algorithms, a few modifications
will be made to the MRE. At first a time measurement will be included to see how the
runtime will change. Furthermore, there shall be a measurement of the accuracy of the
position. A simple approach can be to just take the deviations of the position of the
robot in the simulator and the position estimation of the registration. On the one hand
there is the euclidean distance between them. On the other hand there is the deviation
of the angles.
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For suiting the need of flexibility and testability, the design patterns of the Gang of
Four [5] were considered. After a coarse study of the them, the Strategy design pattern
was contemplated for solving that task. The testing shall be done with the C++ BOOST
Unit testing framework.

If one or more of the algorithms succeeds, the navigation system can be optimized
for situations depicted in Figure 4.2. The figure shows a situation in which the robot
is coming from below left and tries to reach a given way point of the planned path
(black). After reaching the way point, a next way point on the right-hand side (not in
the picture) is tried to be reached. Three possible ways for this situation are depicted,
each marked with a different color. The diamonds represent way points and the arrows
possible movements of the robot, together they form a possible path. The light pink
circle is a range around the given way point the robot tries to reach. Its size depends on
the side clearance the robot has to achieve on the way to the next way point on the right
side. If the robot’s MLPose is within that circle after it tried to reach this way point, it
goes on to the next step. The robot then tries to reach the next way point of the planned
path. If the robot’s MLPose is outside of that circle, it first tries to reach the currently
given way point again until it is within that circle. One example is the red way in the
Figure. But there are situations when the robot’s position is outside that circle while the
robot could drive safely to the next way point nevertheless. Such a situation is the green
way. There the robot can go ahead to the next planned way point without violating the
critical side clearance.

Another situation is when the position of the robot in the reality is already within
the circle but the MLPose is outside because of its lack of accuracy. In this situation a
more accurate position estimation could help too to prevent the robot from correcting
its position and relocalizing again.

¢ \ >
/ critical side clearance

Figure 4.2: Navigation problem in front of the narrow environment.
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5 Implementation

This section describes the realization of the preceding concept. Therefore it is also divided
into three major steps: The retrieving of the template data covers the two steps stated
above, trying to sample random points on a surface model and trying to simulate depth
measurements. After that, there is a description of the application of the basic algorithms
(ICP, MCR and OpenCV algorithm) to the chosen template data. Finally, there will be
the integration of the best fitting algorithm(s) and template data into the MRE and a
detailed evaluation of them.

5.1 Example scene

For evaluation concerns, a map of the DLR Mobile Laboratory was used for generating
data on which the algorithms could be applied (see Figure 5.1). The format of that
model was the open inventor file format [1]. It has a narrow area simulating a door
frame. Another narrow area is the door at the far end of the laboratory. A third one is
the floor beneath it where there is a box, blocking part of the environment.

5.2 Retrieving the template data

As stated in the Concept section, there are two possibilities for retrieving the template
data: Sampling random points on the surface of the model of the testing environment or
simulating depth measurements on it.

Sampling of random points

The file format of the model of the test environment is open inventor, at first it has to be
converted into an L3D specific file, containing only triangles. The conversion processing
is performed within the L3D framework.

Then points are sampled over each triangle. To have an equal share of points over the
whole added up size of the surface of all triangles, a sampling factor is introduced. The
sampling factor is multiplied with the surface of each triangle. The resulting number is
the quantity of sampled points on the current triangle.

Figure 5.2 illustrates the point cloud of the test environment. Two major problems
occurred with this model. The first one is obvious: the share of the points produced by
the sensors was different. Vertical planes are covered by more points per square meter,
while horizontal planes such as the floor have a relatively low coverage. The initial idea
was to try this kind of template anyway. Indeed it turned out that the ICP was matching
well in that model.

15



Figure 5.1: This is the test environment for the robot. The first narrow passage is marked.

Figure 5.2: The random sampled points of the test environment. The narrow area is
marked.

16



The other problem occurs if a plane is not visible. Nevertheless points are sampled on
this plane. Data points, always coming from planes that can be seen, might associate
with the points of the invisible plane. These false matches can disturb the ICP, as well as
the MCL and should be avoided. Since the weakness comes from the calculation method
itself, it was decided to go over to another method at this point.

Simulating depth measurements

The simulation environment of L3D has a simulator for depth images. After the preceding
approach failed, it was used for the simulation of depth images to get the template data.
The idea was simple: Three basic measurement points were chosen manually.

Figure 5.3: The three chosen measurement positions.

In Figure 5.3 three positions are depicted. There was one major reason for that: The
robot positions in front of the obstacle could not be predicted. But we assume that the
robot will in fact move through the narrow environment. When it arrives, it will probably
take the first measurement while standing in front of the obstacle as for position 1 or
3. In addition, it will probably take one measurement while standing in the narrow
environment. So the three positions shown in Figure 5.3 were chosen. Of course it can
be at a quite different place, but if the template model is dense enough and covers most
corners, that would not be a big problem.

Then 12 measurements were done from every point with the measurement simulator,
heading around the point in 30 degree steps. Each measurement consisted of 1 depth
image. So a sufficiently dense template with global coordinates could be created. The
robot simulation was not used here to get a reasonable sensor coverage of the environment.
At this point the measurement simulation for depth images did not add Gaussian noise
to get a plain template. In contrast the measurement simulation of the robot in MRE
will add Gaussian noise to simulate realistic depth images. When this step was finished,
the data was cropped: Only points that were closer than 1.5m to the narrow area
remained. For determining that, only the X- and Y-coordinates of the points and the
narrow environment were considered. So the environment in which the points around the
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narrow area remain is cylindrical. The final step was to save the template, as depicted
in Figure 5.4, in a file.

Figure 5.4: The template data (compare Figure 5.1).

Obviously the density of points on the floor is now different to that of the walls,
for example. Another important fact is the elimination of most of the planes that are
invisible for the sensors and would only lead to false matching. This includes the parallel
planes of points too. These were the reason for the undesirable artifacts of the feature
calculation described in the preceding section. Above all, this data is more realistic than
the simply random sampled points because it is similar to the data coming from the
sensors. Because scan data matches best with template data that is equally shaped, this
template was chosen for the application of the registration algorithms.

For the MCR a template which only contains reduced feature points was calculated.
It is based on the same template that was just produced for the ICP and the calculations
were done by programs of the L3D framework. The feature calculation is based on the
curvature each point builds with its neighbors. At first feature points were calculated
on the template (Figure 5.5 left). For the reduction the feature points were classified,
depending on the feature value, while 7 classes were used. Then the reduction process
drops points depending on a threshold ratio and their feature value. In this case the
threshold was 0.1, which means that only 10 percent of the points remain. The points
of different classes are treated differently. The more points a class has, the more points
are reduced. As a result, only the most important points, thus the points with the rarest
features, remain.

Because this template is much more realistic than the randomly sampled points, it was
chosen for further evaluation with the registration algorithms.

5.3 Retrieving the sensor data

For the ICP the depth images coming from the sensors in the simulation just had to be
converted into a point storage. A converter in L3D did that work.

The first step of the data for the MCR was the same like for the ICP. But then features
had to be calculated on that point cloud. The calculation became problematic since the
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Figure 5.5: The left picture shows the feature points, calculated out of the normal tem-
plate point cloud. The right one shows the classified and reduced feature
points. The color mapping is continuous and ranges from red for low curva-
ture features to green for high curvature features.

Figure 5.6: The omniRob in the simulation. The view fields of the depth sensors are
marked red transparent.
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sensors do not have a full coverage of the environment. Especially the very near areas
have a poor sensor coverage (see Figure 5.6). If an obstacle is close to the robot, it is
likely to remain only partly seen (or even unseen).

In the right picture of Figure 5.7 very few remaining points can be seen in the reduced
template cloud. Actually it is meant to drop many points and let only the most important
remain. This should be the advantage of the feature calculation because less points means
less runtime. But since the sensors do not have a good coverage of the near environment
(Figure 5.6), they often miss areas where the most important features are.

Another problem was located in the underlying feature calculation based on geometric
relations between the points. It appears when a depth image is taken across the edge of
an obstacle like in Figure Figure 5.7, while the other side of the edge is not visible for
the camera.

Within the red marked area an edge of the obstacle in Figure 5.7 (part of the simulated
door frame) can be seen that does not have correct features in the calculated feature
point cloud. In the reduced feature point cloud the points in that area, although very
important, are discarded. The features at the edge actually have to be edge related.
But the other side of this edge is not visible, so they are discarded because the feature
calculation algorithm needs points in the near environment, otherwise they became plane
related. Figure 5.8 shows that schematically: You can see that the vertical side of the
obstacle is on the blind side of the sensor and thus not covered with points. In this
instance the yellow marked points get wrong (plane related) features. Generally they
can also get no features at all this situation if they have too few neighbors.

Figure 5.7: The left picture shows all the calculated feature points of a depth measure-
ment the right only the classified and reduced ones. The color mapping of
the measurement data is light blue for plane related features, moving on to
yellow for edge related features. Points that do not have a feature are white.

The image processing methods for feature calculation directly on the depth images was
actually meant to solve that problem. In fact the proposed filter could detect exactly
these edges the geometric feature calculation could not find. But this were almost the
only features detected by this method, what can be seen in Figure 5.9. Especially the
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Figure 5.8: You can see the beams (Grey) of the camera hitting an obstacle (black)
partly. The broken line represents the points that appear. Light blue means
normal features can be calculated later. Yellow means wrong features will be
calculated later or no features at all.

normal concave and convex edges of obstacles that are fully covered do not get features.

Figure 5.9: The feature values that are calculated directly on the depth image with image
processing methods. Points corresponding with edges are yellow, all other
points are light blue.

Both, the geometric feature calculation and the image processing method, seem to
complement each other. The combination of both methods is not covered in this thesis.
Nevertheless it could be the base of a future proceeding and should be evaluated.
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5.4 Application of the algorithms and rough evaluation

At the beginning this part mainly consisted of using several binaries for processing the
data and then applying and evaluating the algorithms. Later it turned out that it was
sufficient to implement components directly and then just test them with Unit tests.
The design pattern Strategy isolates the component with the specific algorithm, so that
it does not have to rely on external dependencies. Generally spoken, it provides loose
coupling. The result is an easy testable component, amongst others. Besides, unit tests
are highly automated, many test cases can be written with less expense. All test cases
can be run altogether or specific test cases can be run - each with only one call. They
can be used more flexibly than testing with binaries and the tests are faster to use and
reproduce.

Figure 5.10: The robot positions planned for the rough evaluation. The narrow area is
in the center. From these positions the depth images were taken.

For the evaluation different positions of the robot, facing the obstacle, were chosen.
In Figure 5.10 you see the general positions that were used for the evaluation. They are
only approximated, the used positions in the reality differ from them. That is because
you can not simply reproduce realistic data on a certain position. In the reality the robot
has knowledge from the previous data acquisitions and position estimations. Thus only
an approximate guess is possible, if the SimPose has to be on a certain position. You
can set the SimPose and shift and twist the measurements taken from that SimPose.
That was also done for creating extreme test conditions for the registration. However,
the normal deviance of the position and the angle were mostly not enough to irritate the
ICP.

5.4.1 ICP

The proceeding for the ICP was relatively simple compared to the other ones. It just
takes two normal point clouds, one as template, another one as data for matching with
that template. The template of the previous section (see section 5.2) was used and the
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data was extracted from a run in MRE.

-
‘ \\\\\\\\j‘

Figure 5.11: The camera and template data before and after matching with the template
data. The template data is shaded red and the matched camera data is
shaded light blue.

Table 5.1: This shows the values of the positions, corresponding to Figure 5.11. The Z
values are left out because the movements did only happen in 2-D. MLPose
is normally set by the MCL, but if registration is applied, it is set by the

registration.
X in mm Y in mm angle in degrees
SimPose 3864.27 8124.88 153.24
MLPose 3960.78 8156.07 153.66
MLPose after applying ICP 3864.06 8125.3 153.24

Figure 5.11 shows a typical situation of the robot standing in front of the narrow area
at Position 1. The data is taken right out of the simulation in the MRE. As can be seen
in the corresponding Table 5.1, a shift on the X-axis of around 96 mm and a shift on the
Y-axis of around 31 mm is visible. There is also a little twist smaller than one degree.
All three components match very well after applying the ICP. The deviance of the new
MLPose are smaller than 1 mm and 0.01 degrees.

This was the case for most situations of the simulation that were examined. Only in
a minority of the situations there were bad results in the tests. An example can be seen
in Figure 5.12: In this case only three camera measurements are corresponding to the
template point cloud at all. Unfortunately two of them only overlap with the floor and not
with the walls. That is a problem since the ICP absolutely needs valid correspondences
to walls to make a right shift in the horizontal directions. The floor is flat horizontally,
so it does not make a big difference where the points of the measurement match there.
The only measurement where points can correctly match with the template points is the
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one that you can see in the center left. It bears the whole load of horizontal matching
what is obviously not enough at that point.

Figure 5.12: The camera and template data before and after an unsuccessful matching
with the template data. The template data is shaded red and the matched
camera data is shaded light blue.

The result can be seen in Table 5.2: The shift on the X-axis is overcompensated, while
the shift on the Y-axis and the angle are reduced in the right direction after all.

Table 5.2: This shows the values of the positions, corresponding to Figure 5.12. For
further details refer to the description in Table 5.1.

X in mm Y in mm angle in degrees
SimPose 3952.49 7541.55 -86.51
MLPose 3917.89 7450.02 -83.89
MLPose after applying ICP 3970.37 7493.82 -84.10

However, these situations did not occur often in this preliminary application. So it
was decided to take the ICP as a candidate for the integration into MRE.

5.4.2 MCR

Because of the two major problems described in section 5.3, the MCR failed to deliver
correct transformations. Mostly they were not even close to the simulated position of the
robot or to the position the MCL was estimating. This can be seen in Figure 5.13. The
initial SimPose and MLPose estimation for the data on the right picture are the same as
in Figure 5.11 / Table 5.1. On the right picture both pose estimations can be seen after
the application of the MCR and the resulting transformation to the MCL. The data set
is far more inaccurate than before the application.
Thus far, the MCR was not chosen for the integration into MRE.
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However, the mentioned problems were also the reason for choosing the third proceed-
ing, the calculation of features directly on the depth images.

Figure 5.13: An unsuccessful feature point matching. On the left the initial pose of both
data sets is depicted, on the right the pose estimation of the MCR is applied
the the measurement data. The template feature points are red to green.
The measurement points are yellow to blue.

5.4.3 Image processing methods for depth feature calculation

This approach should have been divided into two steps. The first one would have been
taking the depth image and calculating features directly on it with image processing
methods. After the features were detected and the underlying depth image was trans-
formed into a feature point cloud, the usual algorithms like MCR or ICP could have
been applied. But because the problems depicted in section 5.3 showed up so early, an
application of the image processing methods was obsolete.

5.5 Integration of the algorithms into MRE

Finally, the MRE should be used for an evaluation of the robot’s behavior within a real
world simulation. This includes the integration of the registration algorithms as well
as the measurement of the deviance, as stated in section 4.4. At the beginning of this
section, the basic structure for the integration and the data storage will be explained.
Then a mechanism for determining when to apply the algorithm and an improvement
will be shown.

5.5.1 Base structure for the implementation

A good structure is important because it enhances readability, reusability and testability.
As proposed in section 4.4, the Strategy design pattern was used for the integration
because of several advantages in flexibility and testing. Instead of implementing all the
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algorithm-specific code in the class CommandLoop, it only has a variable pointing to a
concrete class that contains the algorithm-specific code. Figure 5.14 depicts this variable
of type RegAlgorithmICP, stored in the class CommandLoop.

But only implementing the algorithm is not enough. The function that applies the
registration, invokeRegAlgorithm(), takes a special storage type for the passed depth
images. Therefore an extra function was developed for converting the depth images to
points by iterating through the list. It also does the optimization, if depth images are
not necessary (see section 5.6).

For the evaluation there were done some important changes too. First a time mea-
surement was introduced for the method that does the steering from a start point to a
goal point (for example results, see Figure 5.17). Another issue was the measurement of
the deviance of the MLPose (before and after applying the ICP) and the SimPose. That
was also done in the class CommandLoop because it has easy access to the position of
the robot (MLPose and SimPose) and to the corrected MLPose of the registration.

The template data is stored in a class called Obstacle (see Figure 5.14) were it is read
at the initialization of MRE. Obstacle mainly aggregates the map and path data. It is a
good accessible data structure and so the template data is fitting well.

Getting the point storage’s needed more processing because the cameras only provide
depth images whereas the registration algorithm implementations of L3D need point
clouds. In addition, these depth images are stored in a list instead of the DepthIm-
ageStorage the registration algorithms and the conversions expect. Therefore a function
was implemented to iterate through the list. While doing that it first looks whether the
current depth image is needed at all (see section 5.6). If yes, the depth image is copied
into a given DepthlmageStorage. After that the depth images could be converted to
point clouds.

At runtime the CommandLoop picks the template data out of the Obstacle and passes
it, together with the current measurement data, to the chosen algorithm.

5.5.2 Determining the application of the registration

Now a basic structure is determined as well as the data calculation and storage. When
MRE runs, the registration algorithm has to be triggered when the robot is near enough
to the obstacle.

The first try then was to take the euclidean distance between the robot’s MCL position
and the obstacle’s position as a measurement for deciding whether to apply the algorithm
or not. This is very easy to implement, but can also cause trouble. If the robot drives
near a narrow area but does not go through it, the algorithm possibly is applied but not
needed. That would result in more runtime without any benefit.

5.6 Optimizing the input data of the ICP

The ICP implementation of the DLR. already has an optimization: There is a radius for
the correspondences of each point. Another potentially correspondent then is only taken
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Obstacle

CommandLoop 1 I -m_narrowAreas: List
-m_useRegistration: bool
RegAlgorithm
- 0 1 1
-robot(): L3DGenericMobileRobot |- - +<<virtual>> invokeRegAlgorithm(): void
-0 1

-m_paramFile: std::string

+invokeRegAlgorithm(): void

1
1
1
1
1 RegAlgorithmICP
1
1
1
1

RegAlgorithmOpenCV

-m paramFile: std::string
+invokeRegAlgorithm(): void

GenericMobileRobot

-m_simPose: RobotPose
-m_globalMLPose

prepareStorage()BI

Figure 5.14: The structure of the most important involved components. The registration
algorithms are implemented using the design pattern Strategy in which ev-
ery algorithm has an own class. The diagram is simplified: The parameters
of the functions are left out. CommandLoop, GenericMobileRobot and Ob-
stacle have much more functions and responsibilities. RegAlgorithmOpenCV
could be another possible implementation of RegAlgorithm and could be
run and maintained independently of RegAlgorithmICP.
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into account, if the euclidean distance to it is smaller than this radius. The result is a
much shorter runtime without drawbacks, if the radius is carefully selected.

However, the template data normally only covers the narrow area and a bit of its
surroundings. If the robot is not directly in the narrow passage its sensors often return
depth images from areas not covered by the template data. To find out whether this has
an impact on the runtime of the ICP, runtime tests were created and conducted.

Table 5.3: Example of the evaluation of the ICP with the three front cameras and all
cameras. The second row shows the robot position after applying the algorithm

Three front cameras All cameras
Runtime in seconds 1.04 2.78
robot position 3918.71, 9110.31 3918.71, 9110.31

Table 5.3 depicts that the estimated robot position does not change at all on the
one hand. On the other hand the runtime decreases significantly when only the three
front sensors are used. This test is also done in other situations where only the three
front sensors are needed. The relative runtime reduction of around 70 % is nearly the
same at all the tests. But this case only observes the application of the ICP alone. An
implementation of this optimization was included into the prepareStorage() function.
The runtime of the improved function prepareStorage() together with the ICP is only
slightly shorter than the runtime of both components without the optimization. Further-
more, the optimization was delivering wrong depth images when it was applied into the
MRE, although unit tests showed a different behavior of it when it was isolated. This
difference in behavior could not be examined, thus a solution was not found. So the
optimization was removed again and the examination of it remains a task for a future
analysis.

5.7 Changes of the navigation system

The section 4.4 stated a way to manipulate the robot’s driving so that it does not drive
and relocalize unnecessarily. The depicted way is only applied if the registration process
took place because the MCL alone is too inaccurate. In Figure 5.15 the branch "Way to
next way point clear?" can be seen down in the center. This was the only modification,
after the registration. It bypasses the following branch "Close enough to current way
point?" if the robot can drive directly to the next way point without collisions. Otherwise
movement and relocalization cycles are possible if the robot is not close enough to the
current way point. After setting the next way point the robot tries to reach it in the
next step automatically.
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Figure 5.15: A simplified diagram of the navigation system with the optimization, as-
suming that the registration is used in every step.

5.8 Evaluation of the use of registration algorithms

The evaluation in this thesis focuses on the ICP. The other ones failed at registering the
data correctly or the input data for them could not be calculated correctly. One problem
occurred when running very many test runs (100 and more). Sometimes the robot strays
from the normal path, delivering completely false results for the MLPose from then on
until it by chance is on the path again. Since it appears both in the runs with and
without registration, the origin of this behavior probably does not lie in the implemented
component. The corresponding results to such situations were sorted out when a data
set was used for an evaluation.

Mainly, two ways will be analyzed, depicted in Figure 5.16. For each way the robot
has to travel through the narrow area. Each way will be evaluated with and without
registration.

5.8.1 Runtime

The runtime was one major issue for this thesis. The idea was to make a very accurate
position guess to decide whether the path to the next way point is free and then skip the
current way point. So the repeated relocalization steps in front of the obstacle should
be omitted. Even if the registration algorithm costs some runtime, the more accurate
position estimation should save more runtime in a later stage.

What stands out in Figure 5.17, is the high variance of the time measurements. In
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Figure 5.16: Both analyzed ways, way 1 (left) and way 2 (right).

Table 5.4 the corresponding means show that the robot on average needs around 3 seconds
longer on way I and around 7 seconds longer on way 2. But with this high variances
the results are not convincing enough. Nevertheless it has to be taken into consideration
that the ICP needs additional runtime of around 1 to 2 seconds in every step near the
narrow area. At this point it can be stated that the application brings a little advantage
on way 1, but it does not outweigh the additional runtime the ICP needs. On way 2 the
application does not bring any advantage of run time.
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Figure 5.17: Time measurements of way I and way 2. Each way is driven 100 times.
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Table 5.4: The average times

with registration
62.93
74.37

without registration
59.65
67.33

way 1
way 2

5.8.2 Achieved accuracy

Generally, the accuracy of the pose estimation on the X-axis was enhanced by using the
ICP.
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Figure 5.18: Deviance of X- and Y-axis of 21 runs on way 1 (upper Figure) and 101 runs
on way 2 (lower Figure) in mm. The deviance with registration are red, the
deviance without registration, only with MCL, are blue. Note: the number
of measurements with MCL is more than the number of measurements with
registration. The deviance is recorded in every movement-update cycle.

Table 5.5: The standard deviations of the angle measurements

with registration
1.4741
1.3430

without registration
3.4833
3.4087

way 1
way 2

Figure 5.18 shows that the Y-component of the pose is not matched very good at all,
while the accuracy of the X-axis is mostly improved. The matching works very good
for holding enough space to the obstacle left and right. But in the driving direction it
becomes inaccurate. The reason is that most of the surface space in the narrow environ-
ment is perfectly shaped to match points on the X-axis. In Figure 5.20 it can be seen
that the majority of the surfaces are good for matching points on the X-axis, while only
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Figure 5.19: The variance of the angles without (left) and with (right) registration on
way 1 (top) and way 2 (bottom). Way 1 was driven 100 times and way 2
101 times.
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few surfaces exist where points could be matched on the Y-axis. The environment of
the robot is well structured in this case compared to a straight corridor. Nevertheless
the sensor coverage is often not dense enough and especially the characteristic obstacle
is missed many times. It is important to notice that it is not an azis specific problem of
the ICP but a problem of the environment. If the whole map would have been turned
90 degrees around the Z-axis, the problematic axis now would be the X-axis and not the
Y-axis. If the map would have been turned around 45 degrees, both components, X and
Y, would have roughly the same deviance, while the deviance would still tend only in one
direction: the driving direction through the obstacle and its opposite direction. As soon
as the environment has a different structure, the result would be different too. Consider-
ing the results above, an unstructured wall with a simple door frame will probably cause
more problems on matching the critical deviance to the right and the left of the robot.

Another issue is that the X-component is matching worse on way 2 than on way 1.
The problem might be that the robot has only few space around its start position. it
can not make an accurate first position estimation with active localization then. The
following position estimations might not be good either until a bad position estimation
determines the first initial pose of the sensor data for the ICP. The exact reason could
not be found before this thesis was finished.

The angle deviation was getting lower on both ways (see Figure 5.19). That is positive
since a position error caused by angle deviation gets higher, the longer the distance the
robot travels is. Only on way I the vast majority of the deviance seem unrealistically
low, while there are some significant freak values on the other side. This also explains the
relatively high standard deviation for way 1 with registration in Table 5.5 Whether these
values are right should be analyzed at least in a later evaluation with the real robot.

In the case of way I the problem of the translational deviance might not be as bad
as in other situations. The MLPose is matched relatively good in the directions that
are critical for the side clearance of the robot. The angles show good corrections, too.
What is matched worse is only the direction the robot is driving to. That direction is
normally not so critical because the path planning has already assured that it is clear
(in a static environment). Otherwise the path would have been planned another way. So
the manipulated MLPose does not have to be as accurate in the driving direction as in
the different ones and as the angles.

Howsoever, the achieved accuracy is generally not reliable and high enough. So the
registration should not stay integrated in the MRE in this condition, at least not as a
default procedure. Is definitely has to be improved and further tested until it works more
accurate and more reliable.

This result contradicts the more promising results in subsection 5.4.1. There the ICP
was mostly matching the template and sensor data well, even on the Y-axis. The reason
is that only few perspectives were chosen in subsection 5.4.1. In all perspectives the
sensor data always covered at least a part of the characteristic shape of the simulated
door frame. In the MRE the robot was mostly closer to the narrow environment so that
the sensors often missed the simulated door frame completely. A better study of the
robot’s behavior in MRE before determining of the poses for the rough evaluation might
have cleared this difficulties earlier.
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Figure 5.20: Surfaces where points can match the X-component are marked red, the
surfaces where points can match their Y-component are marked green.
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6 Conclusion

The goal was the analysis of the impact of registration methods on the navigation system
especially when the robot drives through narrow environments. An implementation of
the ICP for this purpose was made, what is the basis for an evaluation of runtime and
pose deviance at the end.

What is already obvious in section 5.3 is the relatively low coverage of the depth sensors
in the near environment of the robot. But naturally the robot needs to perceive near
obstacles in a narrow environment. And high coverage of them is often crucial for the
scan matching process. For example the robot often misses the characteristic shape of
the simulated door frame that usually provides good results for the ICP - if it is visible.
As a consequence it has to be evaluated whether the registration can be successfully used
for local navigation in narrow areas with the current state of the sensor coverage.

The MCR and the image processing method show quite bad results at the early stage
of this work. This does not mean that they are generally bad for scan matching in mobile
robotics. But in this case they suffer especially from the low sensor coverage in the near
environment of the robot. If the coverage was better, they probably would perform
better. Furthermore, a combination of the MCL with the image processing methods
would make sense. The geometric feature detection has problems with jumps (from one
object to another) in the depth image, while the Canny Edge detector detects exactly
these jumps. Both methods show opposing disadvantages that could be cleared if they
were combined.

Another problem that turned out during the evaluation of this thesis is the high vari-
ance of the robot’s driven path. The behavior of the robot on a certain path is very
different from run to run. Sometimes it needs more than twice as much movement-
update cycles. This is visible in the time measurements in Figure 5.17. The times vary
very much too. The high variance makes all results less worthy, so final statements cannot
be made.

The reader might have noted that the Strategy design pattern now only provides one
concrete algorithm subclass for the ICP. But that does not mean the Strategy design
pattern is useless here. On the one hand it was already useful for the unit testing. On
the other hand the algorithm can be changed easily in the future, without big influence
of other classes. It is the compromise that deals best with the requirements. If they
change in the future, the situation must be analyzed and it should be decided whether
the pattern will still be necessary.

The optimization of the input data for the ICP could not be finished for this thesis.
If it worked, a few seconds might be saved for every run of the registration. But it will
probably not be enough to give the registration algorithms a significant advantage in
runtime. The problem with the inaccuracy will not be affected at all.
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Furthermore, the collision avoidance over the whole driven path could not be analyzed.
This is a major problem since collision avoidance is essential and has the highest priority
in most scenarios in mobile robotics. So the next step should be to check collision
avoidance when the implementation of a collision check is available.

However, the results of the analysis in this thesis are not sufficient to come to a full
conclusion, whether the registration algorithms should be implemented or not. The data
basis with the high variance becomes problematic. A further analysis should be made to
verify the results of this thesis with a bigger or more stable data basis.

36



Bibliography

1]

2]
13]

[4]

[5]

6]

7]

18]

19]

[10]

[11]

Open inventor mentor on the visualization sciences group’s website. http://
oivdoc92.vsg3d.com/content/121-open-inventor-file-format, 2013.

Opencv documentation. http://opencv.org/, 2013.

Maxim A. Batalin, Gaurav S. Sikhatme, and Myron Hattig. Mobile robot navigation
using a sensor network. 2004.

Paul J. Besl and Neil D. Mckay. A method for registration of 3-d shapes. IFEE
Transactions PAMI, 14(2):239-256, February 1992.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1994.

Christian Rink, Zoltan-Csaba Marton, Daniel Seth, Tim Bodenmiiller, and Michael
Suppa. Feature based particle filter registration of 3d surface models and its applica-
tion in robotics. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems IROS (accepted), 2013.

Jorg Rowekamper, Christoph Sprunk, Wolfram Burgard, Gian Diego Tipaldi, Cyrill
Stachniss, and Patrick Pfaff. On the position accuracy of mobile robot localization
based on particle filters combined with scan matching. volume 4. IEEE, 1997.

Gennadiy Rozental. Boost.test documentation. http://www.boost.org/doc/1libs/
1_53_0/1ibs/test/doc/html/index.html, 2007.

Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In
Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling, pages
145-152, 2001.

Roland Stenzel. Steuerungsarchitekturen fir autonome mobile Roboter. PhD thesis,
RWTH Aachen, 2002.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, MA, 2005.

37


http://oivdoc92.vsg3d.com/content/121-open-inventor-file-format
http://oivdoc92.vsg3d.com/content/121-open-inventor-file-format
http://opencv.org/
http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/index.html

	Introduction
	Goal
	Structure

	Related work
	Fundamentals
	Programming tools and frameworks
	Mobile Robot Environment
	Simulated hardware

	Concept
	Registration approaches
	Retrieving the data
	Application of the algorithms and rough evaluation
	Integration into MRE

	Implementation
	Example scene
	Retrieving the template data
	Retrieving the sensor data
	Application of the algorithms and rough evaluation
	ICP
	MCR
	Image processing methods for depth feature calculation

	Integration of the algorithms into MRE
	Base structure for the implementation
	Determining the application of the registration

	Optimizing the input data of the ICP
	Changes of the navigation system
	Evaluation of the use of registration algorithms
	Runtime
	Achieved accuracy


	Conclusion

