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Abstract. The paper explores a biologically inspired de�nition of
intelligent autonomous agents. Intelligence is related to whether be-
havior of a system contributes to its self-maintenance. Behavior be-
comesmore intelligent (or copes with more ecological pressures) when
it is capable to create and use representations. The notion of repre-
sentation should not be restricted to formal expressions with a truth-
theoretic semantics. The dynamics at various levels of intelligent sys-
tems plays an essential role in forming representations.
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1 Introduction

What exactly are intelligent autonomous agents? Unless we have some good
criteria that are clear targets for the �eld, it will both be di�cult to judge
whether we have achieved our aims or to set intermediate milestones to mea-
sure whether progress has been made.

The goal of this paper is to present a de�nition of intelligent autonomous
agents. The de�nition has taken its inspiration from biology (in particular
[22], [7]) and is di�erent from traditional de�nitions currently used in AI,
such as the de�nition based on the Turing test. Our de�nition is quite tough
and no robots can at this point be said to be intelligent or autonomous.

2 Agents

Let me start with the notion of an agent. First of all, an agent is a system.
This means a set of elements which have a particular relation among them-
selves and with the environment. Agents need not necessarily be physically
instantiated. They could for example take the form of a computer program
(a software agent) or a collection of individuals which have common objects
(a nation acting as an agent). In this context we are speci�cally interested in
physically embodied agents, as in the case of robotic agents or animals.



Second, an agent performs a particular function for another agent or sys-
tem. This however makes agents not yet di�erent from other kinds of devices
or computer programs. The nature of an agent becomes apparent when we
look at the common sense usage of the word. A travel agent for example is not
only performing a particular function for us. The travel agent also has a self-
interest: It will perform the function if it gets in turn resources to continue
its own existence.

So we get a third essential property: an agent is a system that is capable
to maintain itself. An agent therefore must worry about two things: (i) per-
forming the function (or set of functions) that determines its role in larger
units and thus gives it resources and (ii) maintain its own viability.

This de�nition of an agent is so far almost completely identical with that
of a living system. Living systems are usually de�ned as systems which ac-
tively maintain themselves. They use essentially two mechanisms which sug-
gests that agents need the same:

+ They continuously replace their components and that way secure exis-
tence in the face of unreliable or short-lived components. The individual
components of the system therefore do not matter, only the roles they
play.
+ The system as a whole adapts/evolves to remain viable even if the
environment changes, which is bound to happen.

The word agent is currently used in a much more loose way then above.
Without a biological perspective it is however di�cult to distinguish between
agents and other types of machines or software systems. In our view, the term
agent is used inappropriately for software agents when they do not have any
self-interest whatsoever (as is for example the case in [17]), or when the
notion of agent is restricted to a unit that is capable to engage in particular
communications [11].

The drive towards self-maintenance is found in biology at many di�erent
levels and equivalent levels can be de�ned for robotic agents:

The genetic level. This is the level which maintains the survivability of the
species. Mechanisms of copying, mutation, and recombination together
with selection pressures operating on the organisms carrying the genes,
are the main mechanisms in which a coherent gene pool maintains itself
and adapts itself to changing circumstances. For arti�cial robotic agents,
the building plans, the design principles, and the initial structures of
one type of agent when it starts its operation correspond to a kind of
genetic level. Several researchers have begun to make this level explicit
and perform experiments in genetic evolution [9], [?].
The structural level. This is the level of the components and processes
making up the individual agents: cells, cell assemblies, organs, etc. Each of
these components has its own defense mechanisms, renewal mechanisms,



and adaptive processes. In the case of the brain, there are neurons, net-
works of neurons, neural assemblies, regions with particular functions,
etc. In arti�cial systems, they involve internal quantities, electronic and
computational processes, behavior systems regulating relations between
sensory states and actuator states, etc., but we should probably seem
them more as dynamic, evolving entities instead of �xed components [?].
The individual level. This is the level of the individual agent which has
to maintain itself by behaving appropriately in a given environment. In
many biological systems (for example bacteria or ant colonies) individuals
have no or little self-interest. But it is clear that the individual becomes
gradually more important as evolution proceeded its path towards more
complexity, and con
icts arise between genetic pressures, group pressures,
and the tendency of the individual to maintain itself. Greater individu-
ality seems to be linked tightly with the development of intelligence. In
the case of arti�cial systems, the individual level corresponds to the level
of the robotic agent as a whole which has to survive within its ecological
niche.
The group level. This is the level where groups of individuals together
form a coherent whole and maintain themselves as a group. This may
include defense mechanisms, social di�erentiation according to the needs
of the group, etc. In the case of arti�cial systems, the group level becomes
relevant when there are groups of robotic agents which have to cooperate
in order to survive within a particular ecosystem and accomplish tasks
together [18].

For a long time, the natural sciences have made progress by reducing the
complexity at one level by looking at the underlying components. Behavior at
a particular level is explained by clarifying the behavior of the components
at the next level down. For example, properties of chemical reactions are
explained (and thus predicted) by the properties of the molecules engaged in
the reactions, the properties of the molecules are explained in terms of atoms,
the properties of atoms in terms of elementary particles, etc. Also in the case
of intelligence, we see that many researchers hope that an understanding
of intelligence will come from understanding the behavior of the underlying
components. For example, most neurophysiologists believe that a theory of
intelligence will result from understanding the behavior of neural networks
in the brain. Some physicists go even so far as to claim that only a reduction
of the biochemical structures and processes in the brain to the quantum level
will provide an explanation of intelligence ([26]).

At the moment there is however a strong opposing tendency in the basic
sciences to take a wholistic point of view [6]. This means that it is now under-
stood that there are properties at each level which cannot be reduced to the
level below, but follow from the dynamics at that level, and from interactions
(resonances) between the dynamics of the di�erent levels ([25]). This suggests
that it will not be possible to understand intelligent autonomous agents by



only focusing on the structures and processes causally determining observ-
able behavior. Part of the explanation will have to come from the dynamics
in interaction with the structures and processes in the environment, and the
coupling between the di�erent levels. A concrete example of this approach is
discussed in another paper contained in the Trento Advanced Study Institute
proceedings [?].

3 Autonomy

The term autonomy means essentially `be relatively independent of'. Thus
one can have energy autonomy, in the sense that the robot has on-board bat-
teries so that it is at least for a while independent for its supply of energy. One
can also have control autonomy or automaticity. The agent then has a way
to sense aspects of the environment and a way to act upon the environment,
for example change its own position or manipulate objects. Automaticity is
a property that we �nd in many machines today, for example in systems that
control the central heating in a house, or in an airplane that 
ies in automatic
mode.

But usually the concept of autonomy in the context of biology and hence
for intelligent autonomous agents when viewed from a biological perspective
goes further. Tim Smithers (personal communication, 1992) characterises au-
tonomy as follows:

"The central idea in the concept of autonomy is identi�ed in the etymol-
ogy of the term: autos (self) and nomos (rule or law). It was �rst applied to
the Greek city states whose citizens made their own laws, as opposed to liv-
ing according to those of an external governing power. It is useful to contrast
autonomy with the concept of automatic systems. The meaning of automatic
comes from the etymology of the term cybernetic, which derives from the
Greek for self-steering. In other words, automatic systems are self-regulating,
but they do not make the laws that their regulatory activities seek to satisfy.
These are given to them, or built into them. They steer themselves along a
given path, correcting and compensating for the e�ects of external perturba-
tion and disturbances as they go. Autonomous systems, on the other hand,
are systems that develop, for themselves, the laws and strategies according
to which they regulate their behaviour: they are self-governing as well as
self-regulating. They determine the paths they follow as well as steer along
them."

This description captures the essential point. To be autonomous you must
�rst be automatic. This means that you must be able to operate in an en-
vironment, sense this environment and impact it in ways that are bene�cial
to yourself and to the tasks that are crucial to your further existence. But
autonomy goes beyond automaticity, because it also supposes that the ba-
sis of self-steering originates (at least partly) in the agent's own capacity to
form and adapt its principles of behavior. Moreover the process of building



up or adapting competence is something that takes place, while the agent is

operating in the environment. It is not the case that the agent has the time
to study a large number of examples or to think deeply about how it could
cope with unforeseen circumstances. Instead, it must continuously act and
respond in order to survive. As Smithers puts it:

"The problem of autonomous systems is to understand how they develop
and modify the principles by which they regulate their behaviour while be-
coming and remaining viable as task achieving systems in complex dynamical
environments." (Smithers, personal communication, september 1992).

AI systems built using the classical approach are not autonomous, al-
though they are automatic. Knowledge has been extracted from experts and
put into the system explicitly. But the extraction and formalisation has been
done by analysts. The original knowledge has been developed by experts. It
is not done by the system itself. Current robotic systems are also automatic
- but so far not autonomous. For example, algorithms for visual processing
have been identi�ed in advance by designers and explicitly coded in the com-
puter. Control programs have been invented based on a prior analysis of the
possible situations that could be encountered. The resulting systems can solve
an in�nite set of problems, just like a numerical computer program can solve
an in�nite number of calculation problems. But these systems can never step
outside the boundaries of what was foreseen by the designers because they
cannot change their own behavior in a fundamental way.

We see again strong parallels with biology. Biological systems are au-
tonomous. Their structure is not built up by an outside agency, but they
develop and maintain their internal structure and functioning through mech-
anisms like self-organisation, evolution, adaptation, and learning; and they
do so while remaining viable in the environments in which they operate.

Another way to characterise autonomy takes the viewpoint of the ob-
server. The ethologist David McFarland, points out that an automatic system
is something of which you can fully predict the behavior as soon as you know
its internal basis of decision making. An autonomous system on the other
hand is a system `which makes up its own mind'. It is not clear, even not
to the original designer, how a system will respond because it has precisely
been set up so that responses evolve and change to cope with novel situations.
Consequently autonomous systems cannot be controlled the same way that
automatic systems can be controlled:

"Autonomous agents are self controlling as opposed to being under the
control of an outside agent. To be self-controlling, the agent must have rel-
evant self-knowledge and motivation, since they are the prerequisites of a
controller. In other words, an autonomous agent must know what to do to
exercise control, and must want to exercise control in one way and not in
another way." [22], p.4.

Also in this sense, classical AI systems and current robots are not au-
tonomous because they do not have their own proper objectives and motiva-



tions, only those of their designers.

4 Intelligence

AI has wrestled since the beginning with the question of what intelligence is,
which explains the controversies around the achievements of AI. Let us �rst
look at some typical de�nitions and then build further upon the biologically
oriented de�nitions discussed in the previous paragraphs.

The �rst set of de�nitions is in terms of comparative performance with
respect to human intelligence. The most famous instance of such a de�nition
is the Turing test. Turing imagined interaction with either a human or an in-
telligent computer program through a terminal. When the program managed
to trick the experimenter into believing that it was human often enough, it
would qualify as arti�cial intelligence.

If we consider more restricted versions of the Turing test, for example
compare performance of chess programs with human performance, then an
honest observer must by now agree that computer programs have reached
levels of competence comparable to human intelligence. The problem is that
it seems possible (given enough technological e�ort) to build highly complex
programs which are indistinguishable in performance from human intelligence
for a speci�c area, but these programs do not capture the evolution, nor the
embedded (contextual) nature of intelligence [4]. As a consequence 'intelli-
gent' programs are often quali�ed as being no longer intelligent as soon as the
person inspecting the program �gures out how the problem has been solved.
For example, chess programs carry out relatively deep searches in the search
space and the impressive performance is therefore no longer thought to be
due to intelligence. To �nd a �rmer foundation it seems necessary to look for
a de�nition of intelligence which is not related to subjective judgement.

The second set of de�nitions is in terms of knowledge and intensionality.
For example, Newell has worked out the notion of a knowledge level descrip-
tion [24]. Such a description can be made of a system if its behavior is most
coherently described in terms of the possession of knowledge and the appli-
cation of this knowledge (principle of rationality). A system is de�ned to be
intelligent if a knowledge-level description can be made of it and if it max-
imally uses the knowledge that it has in a given situation. It follows that
arti�cial intelligence is (almost by de�nition) concerned with the extraction
of knowledge and the formalisation and encoding in computer systems. This
approach appears problematic from two points of view. First of all knowledge
level descriptions can be made of many objects (such as thermostats) where
the label 'intelligence' does not naturally apply. Second, the approach as-
sumes a sharp discontinuum between intelligent and non-intelligent systems
and hence does not help to explain how intelligence may have arisen in phys-
ical systems nor how knowledge and reasoning relates to neurophysiology.

There are still other de�nitions, which however are not used within AI



itself. For example, several authors, most notably Roger Penrose, claim that
intelligence is intimately tied up with consciousness and self-consciousness
[26]. This in turn is de�ned as the capability to intuit mathematical truths
or perform esthetic judgements. The topic of consciousness is so far not at
the center of discussion in AI and no claims have ever been made that arti-
�cial intelligence systems exhibit consciousness (although see the discussion
in [34]). Whether this means, as Penrose suggests, that consciousness falls
outside the scope of arti�cial systems, is another matter. In any case it seems
that the coupling of intelligencewith consciousness unnecessarily restricts the
scope of intelligent systems.

These various de�nitions are all to some extent controversial. So let me
now attempt another approach, building on the de�nitions so far. This means
that intelligence is seen as a property of autonomous agents: systems that
have to maintain themselves and build up or adapt their own structure
and functioning while remaining viable. But many researchers would argue,
rightfully, that intelligence involves more than survivability. The appropriate
metabolism, a powerful immune system, etc., are also critical to the survival
of organisms (in the case of arti�cial systems the equivalent is the life time of
the batteries, the reliability of microprocessors, the physical robustness of the
body). They would also argue that many biological systems (like certain types
of fungi) would then be more intelligent than humans because they manage
to survive for much longer periods of time. So we need to sharpen the def-
inition of intelligence by considering what kind of functionalities intelligent
systems use to achieve viability.

Here we quickly arrive at the notion of representation. The term rep-
resentation is used in its broadest possible sense here. Representations are
physical structures (for example electro-chemical states) which have correla-
tions with aspects of the environment and thus have a predictive power for
the system. These correlations are maintained by processes which are them-
selves quite complex and indirect, for example sensors or actuators which
act as transducers of energy of one form into energy of another form. Rep-
resentations support processes that in turn in
uence behavior. What makes
representations unique is that processes operating over representations can
have their own dynamics independently of the dynamics of the world that
they represent.

This point can be illustrated with a comparison between two control sys-
tems. Both systems have to open a valve when the temperature goes beyond
a critical value. One system consists of a metal rod which expands when
the temperature goes up and thereby pushes the valve open. When the tem-
perature goes down the metal rod shrinks and the valve closes. There is no
representation involved here. The control function is implemented completely
in terms of physical processes. The other system consists of a temperature
sensor which converts the temperature into a representation of temperature.
A control process, for example running on a computer but it could also be an



analogical process, decides when the valve should open and triggers a motor
connected to the valve. In this case, there is a clear internal representation
and consequently a process operating on the representation which can be

exibly adapted.

From the viewpoint of an external observer there is no di�erence. Dif-
ferences only show up when the conditions change. For example, when the
weight of the valve increases or when the valve should remain closed under
certain conditions which are di�erent from temperature, then a new metal
for the rod will have to be chosen or the system will have to be redesigned.
When there is a representation, the process operating over the representation
will have to change.

Although it seems obvious that the ability to handle representations is
the most distinguishing characteristic of intelligent systems, this has lately
become a controversial point. Autonomous agents researchers have been ar-
guing `against representations'. For example, Brooks [3] has claimed that
intelligence can be realised without representations. Others have argued that
non-representational control systems like the Watt governor are adequate
models of cognition [35]. Researchers in situated cognition [4], [27] and in
'constructivist' cognitive science [19] have argued that representations do not
play the important role that is traditionally assigned to them. Researchers in
neural networks in general reject `symbolic representations' in favor of sub-
symbolic or non-symbolic processing [31]. All this is resulting in a strong de-
bate of representationalists vs. non-representationalists [10]. Let me attempt
to clarify the issues.

In classical AI, physical structures acting as representations are usually
called symbols and the processes operating over them are called symbol pro-
cessing operations. In addition the symbol processing is subjected to strong
constraints: Symbols need to be de�ned using a formal system and symbolic
expressions need to have a strict correspondence to the objects they represent
in the sense of Tarskian truth-theoretic semantics. The operations that can
be performed to obtain predictive power must be truth-preserving.

These restrictions on representations are obviously too narrow. States in
dynamical systems [14] may also behave as representations. Representations
should not be restricted to those amenable to formal semantics nor should
processing be restricted to logically justi�ed inferences. The relation between
representations and reality can and usually is very undisciplined, partly due to
the problem of maintaining a strict correspondence between the environment
and the representation. For example, it is known that the signals received
by sonar sensors are only for 20 percent e�ectively due to re
ection from
objects. Sonar sensors therefore do not function directly as object detectors
and they do not produce a `clean representation' of whether there is an object
or not in the environment. Rather they establish a (weak) correlation between
external states (the presence of obstacles in the environment) and internal
states (hypothesised positions of obstacles in an analogical map) which may



be usefully exploited by the behavioral models.
Second, classical AI restricts itself mostly to explicit representations. A

representation in general is a structure which has an in
uence on behavior.
Explicit representations enact this in
uence by categorising concepts of the
reality concerned and by deriving descriptions of future states of reality. An
implicit (or emergent) representation occurs when an agent has a particular
behavior which is appropriate with respect to the motivations and action
patterns of other agents and the environment but there is no model. The
appropriate behavior is for example due to an historical evolution which has
selected for the behavior. The implicit representations are still grounded in
explicit representations but these are at a di�erent level. Implicit represen-
tations are much more common than is thought, and this, it seems to me,
is the real lesson of \situated cognition". So far most successes of classical
AI are based on explicit representations which have been put in by designers
(and are therefore not autonomously derived).

5 Conclusions

The paper discussed a characterisationof intelligent autonomous agents which
�nds its inspiration in biological theory. It starts from the idea that agents
are self-sustaining systems which perform a function for others and thus get
the resources to maintain themselves. But because they have to worry about
their own survival they need to be autonomous, both in the sense of self-
governing and of having their own motivations. Because environments and
users of systems continuously change, agents have to be adaptive. Intelligence
helps because it gives systems the capacity to adapt more rapidly to envi-
ronmental changes or to handle much more complex functions by bringing in
representations. Intelligence is seen at many di�erent levels and is partly due
to the coupling between the di�erent levels. Representations are not neces-
sarily explicit but may be implicit.

Althoughmuch progress has been made on many aspects, it is at the same
time clear that truly intelligent autonomous agents do not exist today and
it will be quite a while before such systems come into existence. Impressive
results have been obtained in classical AI using complex representations but
these representations have been supplied by designers and are not grounded
in reality. Impressive results have also been obtained with classical control
systems but such systems hardly use complex representations.Moreover there
is no tradition for viewing robots or software systems as living entities that
are themselves responsible for their survival.
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