Experiment Amputation des Fingers D3

1. Programmeinstellungen

Datenquelle ARFF-Datenstrom:

Dateiname: amputation-d3.arff // File mit einer zufälligen Folge (N=503) von Signalen {d1,..., d5}, bei

denen ab Datensatz 196 kein d3 mehr auftritt

Schrittrate: 10 // alle 10 Lernschritte wird das Fenster (Lerndaten) verschoben

Schrittlänge: 1 // Verschiebung um 1 Datensatz

Puffer: 40 // Größe des Fensters

Basisnormierer:

Nominal: binär aufschlüsseln // => gleiche Ähnlichkeit zwischen den Signalen

Allgemein: keine Anpassung des Wertebereiches

kein Entfernen der Namenspalte

SOM:

Topologie: Hexagon-Torus, 30x40 (Standard),

Lernparameter:

Lernrate: 0.1, exponentiell: 1 // bleibt damit konstant

Nachbarschaftsfunktion: Gauss,

Radius: 12, exponentiell: 1 // bleibt konstant

Schritt: sehr groß, z.B. 2000000

Visualisierungen: U-Matrix: 2x2, Labels anschalten

Gewinnhistogramm: Labels

Komponentenmatrix für fingertipat_d3: 2x2, Labels an

2. Beobachtung

Finger d3 kommt und geht in allen Visualisierungen. Sobald wieder Sensorinformationen von D3 im Datenstrom auftauchen, wird der Platz in der Karte wieder belegt.

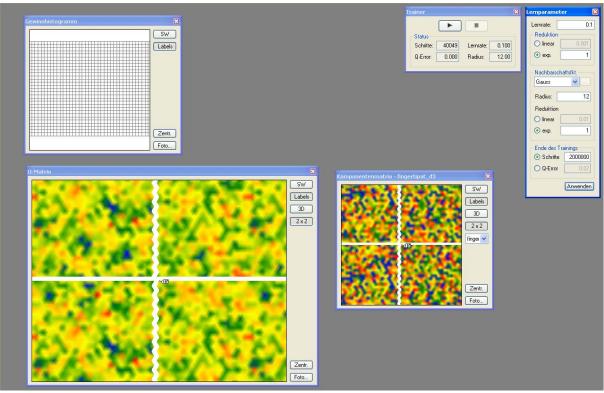


Abbildung 1: Nach der Initialisierung



Abbildung 2: Alle Finger haben einen gleichmäßigen Platz in der Karte eingenommen

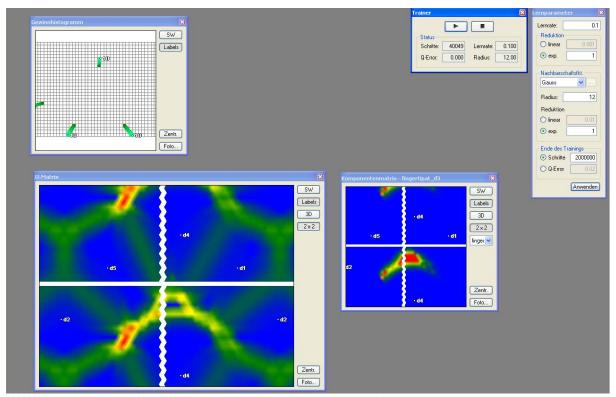


Abbildung 3: Der Platz von d3 in der U-Matrix verschwand zugunsten von d4 und anderer Finger. Erstaunlicherweise zeigt die Komponentenmatrix noch deutlich die Affinität des alten Ortes zu d3. Wenn er wieder im Eingabestrom auftaucht, wird er platziert.

3. Tatsächliches Experiment an erwachsenen Affen

[Merzenich et al. 84] M. M. Merzenich, R. J. Nelson, M. P. Stryker, M. S. Cynader, A. Schoppmann und J. M. Zook. Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of Comparative Neurology, 224(4):591–605, 1984.