Masterarbeit von Christoph Gresch
Einsatz von Data Mining zur Identifikation und Schätzung der Anzahl von Bananenpflanzen in einem Luftbild
In dieser Arbeit werden in einem mit Drohnen aufgenommenen, orthorektifizierten Luftbild Bananenpflanzen detektiert und abschließend gezählt. Die Aufgabe fällt damit in das Gebiet der Mustererkennung und soll durch Ansätze des maschinellen Lernens in einem Data-Mining-Prozess gelöst werden. Die besondere Schwierigkeit besteht in der starken Überlappung der Bananenpflanzen im Bild, wodurch eine Segmentierung schwierig bis unmöglich wird. Ebenso kann bei einer entwickelten Plantage nicht mehr von einer gitterförmigen Anordnung der Pflanzen ausgegangen werden.
Ausgehend von einer Menge manuell annotierter Bananen-Templates werden Merkmale von Bildpunkten entwickelt,die es ermöglichen sollen, mit Hilfe von Supervised Learning die Zentren der Pflanzen von anderen Bildpunkten zu separieren. Es werden verschiedene Merkmale (Farbe, Textur, Gray-Level Co-Occurrence Matrix) und Lernalgorithmen systematisch untersucht.
Kolloqium: 27.02.2017
Betreuer: Prof. Dr.-Ing. Sven Buchholz , Dr. Frederik Jung-Rothenhäusler (ORCA Geo Services), Dipl.-Inform. Ingo Boersch
Download: A1-Poster