Maschinelles Lernen




THB-Studenten beim Data Mining Cup 2017

Mittwoch, Juli 05, 2017

Dynamic Pricing: THB-Studenten beim Data Mining Cup 2017

Auch in diesem Jahr beteiligten sich zwei Teams der Technischen Hochschule Brandenburg am Data Mining Cup der prudsys AG, einem Studentenwettbewerb zur intelligenten Datenanalyse. Mit 202 Hochschulen aus aller Welt erreichte die Teilnehmerzahl einen neuen Rekord. Die Aufgabe aus dem Feld "Dynamic Pricing" bestand in der Prognose einer Kundentransaktion einer Online-Apotheke. Dazu standen reale Daten über einen Zeitraum von 3 Monaten zur Verfügung, während der nachfolgende Monat vorhergesagt werden sollte.

Die Aufgabe ähnelt den Aufgaben der vergangenen Jahre, bei denen klar wurde, dass weniger die Optimierung des Lernverfahrens als insbesondere die Merkmalsgenerierung zu guten Ergebnissen beiträgt. Diese ist jedoch kaum automatisierbar und arbeitsintensiv, so dass es für die beiden Masterstudenten Mario Kaulmann und Herval Bernice Nganya Nana viel zu tun gab. Vermutlich ging es vielen Teams ähnlich, denn von den 202 Anmeldungen schafften es nur 66(!) Teams eine Lösung einzureichen, von denen aufgrund ungewöhnlicher Formatanforderungen noch 11 ungültig waren. Unter den 55 gültigen Lösungen errang das THB-Team den Platz 42, passend für Informatiker. Die zweite Einsendung erfolgte leider eine Minute zu spät und hätte Platz 38 erreicht.

Prognose des freien Willens – Machbarkeit und erste Ergebnisse

Mittwoch, Mai 31, 2017

Du handelst zufällig? Ich weiß, was Du tun wirst.

Masterprojekt auf der NWK18: Der freie Wille eines Menschen ist eine urbane Hypothese und Inhalt angeregter Forschungstätigkeit. Dabei steht die Frage im Mittelpunkt, ob ein freier Wille existiert oder der Mensch durch das Unterbewusstsein gesteuert ist. Im Rahmen dieser Arbeit wird ein Experiment aus dem Bereich Mensch-Roboter-Interaktion entworfen und vorbereitet, das klären soll, ob der Mensch beim Versuch bewusst zufällig zu handeln, doch unbewusst in ein Muster verfällt. Die Voruntersuchung klärt kritische Probleme und begründet die Zuversicht in die Determiniertheit anhand der Prognose einer Zeitreihe menschlicher Aktionen.

Der Vortrag zur Publikation wird von Vanessa Vogel am 31. Mai 2017 an der Hochschule Mittweida gehalten.

Vogel, Vanessa ; Boersch, Ingo: Prognose des freien Willens - Machbarkeit und erste Ergebnisse. In: 18. Nachwuchswissenschaftlerkonferenz (NWK), Hochschule Mittweida, 2017 (Scientific Reports Nr. 1), S. 341-345. ISSN 1437-7624

Masterarbeit von Sebastian Busse

Montag, April 10, 2017

Konzeption und prototypische Implementierung eines Softwaretools zur dynamischen Erstellung von Befundberichten mit Hilfe ontologiebasierter Methoden

Diese Arbeit beschreibt einen Ansatz, nach dem pathologische Befundberichte strukturiert und vollständig erstellt werden können.

Die implementierte Software nutzt Vorlagen der ICCR (International Collaboration on Cancer Reporting), um ein formales Modell der drei Report-Typen zur Erstellung von Endometrium-, Haut- und Prostatakrebsbefundberichten zu erstellen. Bei den erzielten Dokument-Repräsentationen handelt es sich um Wissensbasen, welche in der Web Ontology Language (OWL) formuliert und somit nicht nur maschinenlesbar, sondern darüber hinaus maschinenverständlich sind. Durch die formal spezifizierte Semantik des entsprechenden Formats lassen sich die Berichte unter Verwendung des HermiT-Reasoners auf Vollständigkeit überprüfen. Des Weiteren wird die Verknüpfung der modellierten Report-Bestandteile zu externen medizinischen Wissensbasen wie SNOMED CT, NCIT und PathLex betrachtet.

Die Beschreibung des ontologiebasierten Verfahrens und die prototypische Implementierung des Softwaretools sollen eine mögliche Darstellungsform aufzeigen, nach der Befundberichte im Bereich der anatomischen Pathologie digital, dynamisch sowie durch vorgegebene Strukturelemente präzise und vollständig erstellt und verarbeitet werden können.

Kolloqium: 10.04.2017

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dipl.-Inform. Ingo Boersch

Download: A1-Poster, Masterarbeit

Masterarbeit von Franziska Krebs

Freitag, März 24, 2017

Entwicklung einer prototypischen Web-Applikation zur optimierten Menüplanung unter Verwendung von terminologischem Wissen

Ziel der Arbeit ist eine Applikation zur Menüplanung unter Verwendung ontologischen Wissens aus verschiedenen Quellen.

Ein Schwerpunkt ist die Auswahl und integrative Vernetzung geeigneter Wissensquellen in Form von Terminologien zur Beschreibung der Anforderungen an einen gewünschten Menüplan. Hierzu gehören beispielsweise Rezepte, Nährstoffangaben und diätische Restriktionen. Es soll der CTS2-Terminologieserver des Fraunhofer FOKUS verwendet werden.

Ein zweiter Schwerpunkt ist die Formalisierung des Planungsproblems sowie die Auswahl und lauffähige Umsetzung eines geeigneten Optimierungsverfahrens zur Mehrzieloptimierung. Hierbei ist der Stand der Technik einzubeziehen. Die Qualität der erstellten Pläne wird evaluiert.

Die Analyse, Konzeption und Umsetzung ermöglichen, dass aufbauend auf der Arbeit reale Planungsprobleme des Diskursbereiches gelöst werden können. Die Webapplikation läuft in einem aktuellen Browser und erlaubt in prototypischer Weise das Darstellen der Terminologien, die Eingabe des Planungsproblems, die Parametrierung der Planung und die Visualisierung der Ergebnisse. Die Schwierigkeit der Arbeit besteht in Komplexität und im Umfang der notwendig zu lösenden Teilaspekte.

Kolloqium: 24.03.2017

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr. rer. nat. Rolf Socher, in Kooperation mit dem Fraunhofer FOKUS

Download: A1-Poster, Masterarbeit

Masterarbeit von Christoph Gresch

Montag, Februar 27, 2017

Einsatz von Data Mining zur Identifikation und Schätzung der Anzahl von Bananenpflanzen in einem Luftbild

In dieser Arbeit werden in einem mit Drohnen aufgenommenen, orthorektifizierten Luftbild Bananenpflanzen detektiert und abschließend gezählt. Die Aufgabe fällt damit in das Gebiet der Mustererkennung und soll durch Ansätze des maschinellen Lernens in einem Data-Mining-Prozess gelöst werden. Die besondere Schwierigkeit besteht in der starken Überlappung der Bananenpflanzen im Bild, wodurch eine Segmentierung schwierig bis unmöglich wird. Ebenso kann bei einer entwickelten Plantage nicht mehr von einer gitterförmigen Anordnung der Pflanzen ausgegangen werden.

Ausgehend von einer Menge manuell annotierter Bananen-Templates werden Merkmale von Bildpunkten entwickelt,die es ermöglichen sollen, mit Hilfe von Supervised Learning die Zentren der Pflanzen von anderen Bildpunkten zu separieren. Es werden verschiedene Merkmale (Farbe, Textur, Gray-Level Co-Occurrence Matrix) und Lernalgorithmen systematisch untersucht.

Kolloqium: 27.02.2017

Betreuer: Prof. Dr.-Ing. Sven Buchholz , Dr. Frederik Jung-Rothenhäusler (ORCA Geo Services), Dipl.-Inform. Ingo Boersch

Download: A1-Poster

Data mining in resistance spot welding. In: Int J Adv Manuf Technol

Mittwoch, Dezember 21, 2016

International Journal of Advanced Manufacturing Technology

Beim Widerstandspunktschweißen werden dünne Bleche durch hohe Ströme im Kiloampere-Bereich punktuell miteinander verschweißt. Haupteinsatzgebiet des Fügeverfahrens sind Kraft- und Schienenfahrzeugbau, bei denen diese Verbindungen sicherheitskritischen Anforderungen genügen müssen. Trotz intensiver Forschung auf dem Gebiet ist kein hinreichend zuverlässiges Verfahren bekannt, die Güte der Schweißverbindung zerstörungsfrei zu bestimmen.

Da die Güte der Verbindung wesentlich durch den Verschleiß der Elektrodenkappen mitbestimmt wird, werden die Elektroden mit einem großen Sicherheitspuffer nachgefräst oder gewechselt. Wir stellen einen Ansatz vor, wie ein wesentliches Qualitätsmerkmal - der Punktdurchmesser - mit Prognoseverfahren anhand von Prozessgrößen hinreichend zuverlässig geschätzt und so die Elektrodenlebensdauer erhöht werden kann.

Die Publikation ist für Bibliotheken und Institutionen mit SpringerLink-Lizenz im Volltext verfügbar:

Boersch, Ingo; Füssel, Uwe; Gresch, Christoph; Großmann, Christoph; Hoffmann, Benjamin:
Data mining in resistance spot welding: A non-destructive method to predict the welding spot diameter by monitoring process parameters.
In: The International Journal of Advanced Manufacturing Technology (2016), 1--15. http://dx.doi.org/10.1007/s00170-016-9847-y, ISSN 1433-3015

Bachelorarbeit von Tobias Meyer

Freitag, Oktober 14, 2016

Hyperparameter Selection for Anomaly Detection with Stacked Autoencoders - a Deep Learning Application

Ziel der Arbeit ist eine Untersuchung numerischer und strategischer Parameter bei der Anwendung von Autoencodern zur Erkennung von Anomalien in Bildern. Hierbei sind systematisch die Einflüsse verschiedener Einstellungen zu evaluieren und zu bewerten. Im Ergebnis soll eine Empfehlung zur Einstellung des Verfahrens bei der Detektion Malaria-infizierter Blutzellen vorgenommen werden. Die besondere Schwierigkeit der Arbeit besteht in der Umsetzung eines systematischen Suchprozesses in einem umfangreichen Parameterraum, der Arbeit mit realen Daten und dem aufwändigen Training.

Kolloqium: 14.10.2016

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Sven Buchholz, Dr.-Ing. Christian Wojek (Carl Zeiss AG)

Download: A1-Poster

Masterarbeit von Patrick Rutter

Dienstag, August 02, 2016

Human Robot Interaction am Beispiel eines Tic-Tac-Toe spielenden NAO-Roboters

Ziel der Arbeit ist die Entwicklung einer Applikation, die einem NAO-Roboter ermöglicht, autonom Tic- Tac-Toe gegen einen menschlichen Spieler zu spielen. Schwerpunkt ist hierbei ein natürliches und motivierendes Spielerlebnis. Hierzu ist es notwendig, robuste Lösungen für Teilprobleme der Interaktion wie Rezeption und Aktorik zu entwickeln, die diese Zielstellung berücksichtigen. Eine leistungsfähige Spielstrategie ist so umzusetzen, dass sowohl starke wie auch schwächere Spieler Freude an der Interaktion finden. Die Applikation soll autonom auf dem Roboter laufen und perspektivisch für andere Spiele sowie beim Spiel NAO gegen NAO einsetzbar sein. Die besondere Schwierigkeit der Arbeit liegt in der Gestaltung der Interaktion und dem Lösen der Robotik-Probleme in einer realen, stochastischen Welt.

Die Arbeit wurde in die Problemfelder Spiellogik, Strategie, Aktorik, Bildverarbeitung und Interaktion aufgeteilt. Spiellogik und Strategie beschäftigen sich mit der Umsetzung des grundlegenden Spielablaufs. Die Aktorik dient primär der Umsetzung des Zeichnens auf dem Spielfeld. In der Bildverarbeitung wird das Spielfeld mit Hilfe der Roboterkameras erfasst und ausgewertet. In der Interaktion wird eine auf Sprache basierende Schnittstelle mit dem menschlichen Gegenspieler sowie eine adaptive Spielstärke umgesetzt.

Kolloqium: 02.08.2016

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dipl.-Inform. Ingo Boersch

Download: A1-Poster

Masterarbeit von Benjamin Hoffmann

Montag, Juni 13, 2016

Modellierung patientenorientierter Zielgrößen mit Methoden des Data Mining aus Daten des Behandlungsprozesses beim Mammakarzinom

Ziel der Arbeit ist das Erstellen gültiger, transparenter, prädiktiver Modelle zur Vorhersage patientenorientierter Zielgrößen (poZg), wie bspw. dem Überleben von Brustkrebspatientinnen, aus den Daten des Tumorzentrums. Die Analyse dient insbesondere dem Aufzeigen bisher unbekannter Zusammenhänge, Einflussgrößen und Mustern, die zur Verbesserung des Behandlungsprozesses dienen können und mit Ärzten diskutiert werden können. Die Ergebnisse sind in ihrer Güte anhand der vorliegenden Daten geeignet zu bewerten und durch Fachexperten (Ärzte, TZBB) zu evaluieren.

Zugehörige Aufgabenstellungen sind unter anderem: Definition patientenorientierter Zielgrößen, deskriptive und explorative Analyse, Bestimmung relevanter Merkmale, Merkmalsdefinition, Modellbildung und Evaluierung.

Ein zweiter Schwerpunkt ist die geeignete patientenorientierte Visualisierung von Zusammenhängen, die bei Entscheidungen des Patienten hilfreich sein können. Besondere Schwierigkeiten der Arbeit sind die Umsetzung des Data Mining Prozesses mit realen, unvollständigen, fehlerbehafteten Daten und die Nutzung transparenter Modellierung und Visualisierung zum Erkenntnisgewinn für Fachexperten und zur Entscheidungsunterstützung für Patienten. Alle Softwaremodule sollen auf Wiederverwendbarkeit, auch durch Anwender beim TZBB, ausgelegt sein, vorzugsweise soll Python verwendet werden.

Kolloqium: 13.06.2016

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Sven Buchholz

Download: A1-Poster

THB-Projektkonferenz: Roboter David spielt mit adaptiver Spielstärke

Mittwoch, Juni 01, 2016


Masterstudent Patrick Rutter demonstrierte am 1. juni bei der Projektkonferenz der THB, die Fähgikeiten des von ihm programmierten NAO-Roboters beim TicTacToe-Spiel gegen Besucher. Mithilfe eines verlängerten Fingers setzt der NAO auf einen Touchscreen sein Feld und erkennt die Züge des Menschen. Während des Spieles versucht er zwar zu gewinnen, aber nicht demotivierend oft. Er adaptiert sich dazu an die Spielstärke des menschlichen Spielers und erzeugt so ein kurzweiliges Spielerlebnis.

Die Präsentation zeigt einen Zwischenstand der Masterarbeit.


Foto: Patrick Rutter

Franziska Krebs präsentiert ihr Projekt auf dem NKIF 2016 an der HAW Hamburg

Freitag, Mai 20, 2016

Vortrag zum SmartMenu-Projekt auf dem NKIF 2016 Vom 19. bis 21. Mai trafen sich Professoren, Mitarbeiter und Studenten norddeutscher Fachhochschulen zum zwanglosen Austausch über Forschung und Lehre beim 21. Norddeutschen Kolloquium für Informatik an Fachhochschulen (NKIF 2016) an der HAW Hamburg. Für die TH Brandenburg stellte Franziska Krebs (Masterstudentin Informatik) ihre Zwischenergebnisse zum SmartMenu-Projekt vor, in dem eine Speiseplanung gestützt auf Ontologien und semantische Technologien vorgenommen wird.

Vortragsfolien: Aufbau eines Wissensnetzes für ein klinisches Speiseempfehlungssystem – ein Beispiel aus dem THB-Forschungs-/Projektstudium

Es wurden Kontakte geschlossen und aufgefrischt, gefachsimpelt und diskutiert.

Fotos vom Kolloquium

Masterarbeit von Maik-Peter Jacob

Donnerstag, April 07, 2016

Reflexion und Analyse der Therapieentscheidung im realen Behandlungsprozess des Mammakarzinoms

Ziel der Arbeit ist Reflektion und Analyse der Therapieentscheidung im realen Behandlungsprozess des Mammakarzinoms. Dafür soll zunächst ein normatives Modell, welches aus der S3-Leitlinie (LL) gewonnen wird, mit den tatsächlichen Gegebenheiten, gegeben durch epidemiologische Daten des Tumorzentrums Land Brandenburg e.V., verglichen werden.

Zugehörige Fragestellungen sind hierbei: in wie weit wurde die LL eingehalten, wo gibt es Abweichungen, wie groß sind die Abweichungen. Anschließend sollen datenbasiert verschiedene Modelle und Visualisierungen mit Methoden des Data Minings erstellt werden. Diese sollen die reale Therapieentscheidung widerspiegeln. Wichtige Fragestellungen für die anschließende Reflektion und Analyse sind: wo gibt es Überschneidungen und Unterschiede zum LL-Modell, worauf lassen sich die Unterschiede zurückführen, gibt es andere Einflussfaktoren als in der Leitlinie verzeichnet.

Die besondere Schwierigkeit der Arbeit liegt in der Datenqualität und der komplizierten Anwendungsdomäne.

Kolloqium: 07.04.2016

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr. med. Eberhard Beck

Download: A1-Poster

Die erste internationale Workshop-Erfahrung - Der Fachbereich Informatik und Medien macht‘s möglich

Dienstag, November 03, 2015

Sebastian Busse stellt seine Projektarbeit in Lissabon vor

Sebastian Busse stellt seine Projektarbeit im Rahmen einer Posterpräsentation vor. (Foto: Dennis Wagner)

Im Masterprojekt "Künstliche Intelligenz" arbeitet Sebastian Busse an einem System zur Überprüfung von pathologischen Befundberichten auf inhaltliche Vollständigkeit mit Hilfe von terminologischem Wissen. Die erstellte Publikation [1] reichte er beim LOUHI*-Workshop 2015 in Lissabon ein. Der Workshop ist der Teil der EMNLP**-Konferenz.

„Congratulations, your submission has been accepted to appear at the conference.“

Der Fachbereiche Informatik und Medien (FBI) unterstützt Studenten bei Konferenzbeiträgen bei Reisekosten und Tagungsgebühr, um den Einstieg in den Konferenzbertireb zu fördern. So konnte Sebastian Busse seine Arbeit erfolgreich dem wissenschaftlichen Diskurs in Portugal stellen.

* Sixth Workshop on Health Text Mining and Information Analysis

** Conference on Empirical Methods in Natural Language Processing/

[1] Busse, S. Checking a structured pathology report for completeness of content using terminological knowledge. Proceedings of the Sixth International Workshop on Health Text Mining and Information Analysis. 2015 Sep; 103-108

Bachelorarbeit von Jan Dikow

Dienstag, September 15, 2015

Dimensionsreduktion kategorialer Daten zur Erzeugung von Themenlandkarten

Die Firma mapegy erzeugt für ihre webbasierte Analyse-und Visualisierungssoftware mapegy.scout verschiedene Visualisierungen auf Basis mehrerer Datenquellen wie beispielsweise Patentdaten und wissenschaftliche Publikationen. Eine der Visualisierungen ist eine Patentlandkarte, welche auf Grundlage der benutzerabhängigen Eingabe eine Gruppierung der Patente durchführt (Clusteranalyse) und diese Gruppen auf einer Karte darstellt (Dimensionsreduktion), so dass ähnliche Patente nahe zusammenliegen und unterschiedliche weiter auseinander. Dieser Prozess soll grundlegend überarbeitet werden, damit

  1. Verschiedene Typen von Dokumenten (auch z.B. News und wissenschaftliche Publikationen) anhand ihrer Zuordnung zu bestimmten Kategorien verarbeitet werden können,
  2. der Prozess besser skalierbar und insgesamt schnellerwird,
  3. erste Ergebnisse schnell bereitgestellt werden (z.B. durch eine Vorschau, Vorprozesse oder Sampling),
  4. ein Ausgabedatenmodell entsteht, das verschiedene Darstellungen im Front-End möglich macht.

Zur Erzeugung der Themenlandkarten wurde eine GHSOM (Growing Hierarchical Self-Organizing Map) gewählt, deren einzelne Teilkarten aus einer Menge von Neuronenmodellen bestehen, die sich an die Trainingsdaten anpassen und somit Clustering und Dimensionsreduktion gleichzeitig realisieren.

Kolloqium: 15.09.2015

Betreuer: Dipl.-Inform. Ingo Boersch, Uwe Kuehn, M.Sc. (mapegy GmbH, Berlin)

Download: A1-Poster

Masterarbeit von Andy Klay

Montag, September 14, 2015

Realisierung eines Tic-Tac-Toe-spielenden NAO-Roboters mittels automatischen Erlernens der Spielstrategie

Ziel der Arbeit ist die Entwicklung einer Applikation, die einen NAO-Roboter gegen einen Menschen Tic-Tac-Toe spielen lässt. Perspektivisch soll auch ein Spiel zwischen NAO-Robotern möglich sein. Ein Schwerpunkt der Arbeit ist die geeignete Realisierung eines Lernvorganges, mit dem die Applikation eine Spielstrategie erlernt, bspw. mit Reinforcement-Lernen. Der Lernvorgang soll durch die Messung der Spielstärke evaluiert werden. Wünschenswert ist eine Anzeige der aktuellen Spielstärke.

Die Applikation soll modular entworfen werden, so dass ein einfacher Austausch oder Erweiterung von Komponenten ermöglicht wird. Es soll möglich sein, ein verwandtes Spiel, wie 4x4-Tic-Tac-Toe, umzusetzen, in dem im Wesentlichen nur die spielabhängigen Anteile (wie Spielregeln, Situationserkennung, Zugausführung und Testgegner) modifiziert werden. Die Komponenten Spielsteuerung und Lernmodul sollen möglichst unabhängig vom konkreten Spiel sein.

Eine Teilaufgabe besteht in der Erkennung der Spielsituation mit Hilfe der Bildverarbeitung. Die relative Lage des Spielfeldes zum Roboter kann hierbei als statisch und bekannt vorausgesetzt werden. Sie ist im Rahmen der Arbeit geeignet zu definieren. Zur Ansteuerung der Aktorik ist eine sinnvolle, einfache Schnittstelle unter Berücksichtigung der NAO-Plattform zu realisieren. Die Applikation und Ergebnisse sind in geeigneter Weise zu evaluieren.

Kolloqium: 14.09.2015

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn

Download: A1-Poster

Bachelorarbeit von Vanessa Vogel

Mittwoch, September 09, 2015

Konzeption und Implementierung einer Komponente zur Ontologie-Evolution für eine Wissensmanagement-Infrastruktur im Krankenhaus

Die zunehmende Verwendung von Ontologien im klinischen Bereich ist eine Herausforderung für das Gebiet der Onotologie-Evolution. In Anwendungsfällen mit eigenständigen Konzeptualisierungen kann es sinnvoll sein, Ontologien zu verwenden, die durch den Fachexperten erweiterbar sind und die Möglichkeit bieten, das Wissensmanagement direkt in die medizinischen Prozesse zu integrieren. Ein Beispiel ist die Erleichterung der Patientenauswahl für medizinische Studien durch das Studienpersonal. Dabei soll den Experten die Möglichkeit geboten werden, ihre Ontologien in einem redaktionellen Prozess selbständig zu pflegen.

Ziel dieser Arbeit ist die Konzeption und Realisierung einer prototypischen Client-Server-Applikation zur Umsetzung von elementaren Operationen der Ontologie-Evolution als REST-Webservice im Kontext der „Health Intelligence Plattform“ (HIP) für das Wissensmanagement in Krankenhäusern.

Kolloqium: 09.09.2015

Betreuer: Dipl.-Inform. Ingo Boersch, Dr. Christian Seebode (ORTEC medical GmbH)

Download: A1-Poster

Studierende der Fachhochschule Brandenburg spitze in der intelligenten Datenanalyse

Montag, Juli 20, 2015

Auch in diesem Jahr ist der Fachbereich Informatik und Medien mit zwei Teams beim Data Mining Cup (DMC) - einem der größten internationalen Studentenwettbewerbe für intelligente Datenanalyse – im Rennen. Es ging um Couponing im Handel: anhand historischer anonymisierter Bestelldaten eines realen Onlineshops mit zugehörigen Couponausspielungen sollten die Teilnehmer vorhersagen, ob ein Coupon eingelöst wird oder nicht.

Studierende im Masterstudiengang Informatik der Fachhochschule Brandenburg (FHB) haben dazu ein treffsicheres Modell entwickelt. Die Vorverarbeitung und Merkmalsbestimmung aus den Daten war diesmal besonders aufwändig, die Masterstudenten setzten dazu freie Werkzeuge ein und programmierten die Algorithmen in den Sprachen R und Python.

Im Gesamtranking belegten die beiden teilnehmenden Teams der FHB mit ihren Lösungen nun schon das zweite Jahr in Folge hervorragende Plätze.

Ich freue mich mit unseren Teams über die sehr guten Platzierungen“, so Prof. Dr. Sven Buchholz. „In diesem Jahr war die Aufgabe besonders schwer. Wir sind die beste Fachhochschule und haben viele Universitäten hinter uns gelassen.

Insgesamt landeten die beiden Teams der FHB in diesem Jahr auf den Plätzen 11 und 14. Am Data-Mining-Cup 2015 Ende Juni in Berlin nahmen 188 Teams von 153 Hochschulen aus 48 Ländern teil.

An der Fachhochschule Brandenburg ist Data Mining als Wahlpflichtfach und im Forschungs-/Projektstudium des Masterstudiengangs Informatik verankert. Der viersemestrige Masterstudiengang bietet die Möglichkeit, vorhandenes Informatikwissen in den Bereichen der angewandten Informatik sowie in der Medizininformatik zu vertiefen.

Das Data Mining Team der FHB in 2015 mit den Betreuern Sven Buchholz und Ingo Boersch:
Das Team der FHB zum Data Mining Cup 2015
Das Ranking der eingereichten Lösungen:
Das Team der FHB zum Data Mining Cup 2015

Data Challenge "Human Activity Recognition Using Smartphones Data Set" - Projektorientiertes Lernen im Master

Freitag, Juni 26, 2015

Konfusionsmatrix In der Wahlpflichvorlesung "Data Mining" im zweiten Mastersemester der Informatik wird neben knackigen Vorlesungen und Übungen auch eine Data Challenge geboten, bei der eine echte Datenanalyse im Team mit freier Wahl der Mittel bearbeitet und als Paper beschrieben wird. In einem paarweisen Review-Prozess werden die erstellten Analysen durch die Studierenden selbst nach vorgegebenen Kriterien evaluiert.

Die Aufgabe dieses Semesters ist die Konstruktion eines Modells, das die Aktivität einer Person (Sitzen, Liegen, Laufen usw.) aus den Messungen ihres Smartphones erkennt. Es sind belastbare Aussagen zur erwarteten Güte des Modells zu treffen und das Modell auf unbekannte Daten anzuwenden. Die Daten stammen aus [1] und sind vorverarbeitet, um sie leichter in Python, R oder RapidMiner laden zu können.

Bei den erstellten Klassifikationen gibt es kein Schummeln, denn die Lehrenden können erkennen, ob die berechneten Vorhersagen mit der Realität übereinstimmen. Dass die Studierenden die Aufgabe in der Mehrheit hervorragend gelöst haben, zeigt die Abbildung der Erfolgsraten, also der Anteil der richtig erkannten Tätigkeiten.

Abb.: Wie gut können die Teams die Tätigkeit einer Person anhand der Smartphone-Daten vorhersagen:

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

Projektkonferenz - Humanoider Roboter lernt Tic Tac Toe spielen

Mittwoch, Juni 17, 2015

Am 17. Juni herrschte wieder reges Treiben im Vorraum der Mensa: dort zeigten 43 Studierende aus 11 Teams ihre Projektarbeiten auf der diesjährigen 4. Projektkonferenz.

Aus dem Labor für Künstliche Intelligenz präsentierte Andy Klay eine Arbeit zum Reinforcement-Lernen von Spielstrategien in humanoiden Robotern: der NAO-Roboter Eve erkennt mittels Bildverarbeitung die Spielsituatuin eines Tic Tac Toe-Spiels und reagiert mit einem eigenen Spielzug. Die dazu nötige Spielstrategie wurde jedoch nicht fest implementiert, sondern wird durch den Roboter beim Spielen gegen menschliche und künstliche Gegenr entwickelt, in dem er versucht herauszufinden, in welchen Situation, welche Züge zu einem späteren Spielgewinn führen. Schwache Gegner wird er versuchen auszutricksen und von starken Gegnern wird er Strategien übernehmen.

Reinforcement-Lernen ist in der Grundidee ein einfaches Lernparadigma, bei dem der Lerner nicht passiv die Belehrung durch den Lehrer hinnimmt (wie beim supervised learning), sondern aktiv durch eigene Aktionswahl seinen Lernprozess steuert. Der Lerner erntscheidet also, welche neuen Erfahrungen er machen möchte oder ob er lieber bei bewährten Aktionen bleibt. Die praktische Umsetzung wird schwierig, wenn die Umgebung stochastisch reagiert, nur schwer zu erkennen ist, einen Gegner enthält, sehr viele Zustände umfasst oder die Belohnung/Bestrafung verzögert erfolgt. Mindestens zwei dieser Merkmale weist das Tic Tac Toe-Spiel auf.

NAO und Eve vorm KI-Labor:

 

Masterarbeit von Benjamin Arndt

Donnerstag, April 09, 2015

Schlagwortgenerierung für große Dokumentenportfolios und Integration durch ein Business-Intelligence-Tool

Ziel der Arbeit ist die Evaluation von Algorithmen zur Schlagwort-Extraktion aus Dokumenten. Gesucht wird eine Methode, die sich im Kontext der Erstellung von Technologie-Übersichtskarten aus u.a. Patentschriften zur möglichst eindeutigen Beschreibung einzelner Dokumente oder Dokumentmengen eignet. Kriterien zur Abbildung von Beschreibungsgüte und Performanz sollen geeignet definiert und erhoben werden. Ausgewählte Algorithmen sollen in einem SE-Prozess umgesetzt werden. Eine besondere Schwierigkeit der Aufgabe ergibt sich durch die Arbeit mit realen Datenmengen (Stemming, Stoppworte etc.).

Anforderungen an die Algorithmen sind der Umgang mit großen Datenmengen, Laufzeit und das Finden geeigneter Schlüsselworte und –Phrasen. Es werden drei Anwendungsfälle (Suche in Daten, Clustern, Keyword-Cloud) unterschieden. Fünf Algorithmen aus dem Bereich der unüberwachten Extraktion werden dargestellt, implementiert und evaluiert. Es erfolgt eine Aufteilung in zwei Klassen, je nachdem, ob zur Schlagwort-Bestimmung eines Dokumentes die gesamte Dokumentenmenge berücksichtigt wird (TFIDF, CorePhrase) oder nicht (TextRank, Rake, statistische Kookkurrenz-Auswertung). Abschließend erfolgt nach einer Komplexitätsabschätzung die Umsetzung zweier Ansätze in einsatzbereite RapidMiner-Operatoren.

Kolloqium: 09.04.2015

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr. rer. nat. Gabriele Schmidt, Uwe Kuehn M. Sc. (mapegy GmbH)

Download: A1-Poster

Mitmachen beim Data Mining Cup

Dienstag, Februar 24, 2015

Bachelorarbeit von Sebastian Berndt

Freitag, November 14, 2014

Evaluation von Real-Time Appearance-Based Mapping zum Simultaneous Localization and Mapping mit RGB-Depth-Sensorik unter dem Robotic Operating System

Ziel der Arbeit ist die Evaluation des SLAM-Verfahrens RTAB-Map. Das Verfahren integriert aufeinanderfolgende Tiefenbilder eines Kinect-Sensors mit Hilfe einer Korrespondenzanalyse in den zugehörigen Farbbildern zu einer farbigen Punktwolke. Das Verfahren soll im Detail erläutert werden.

Zur Evaluation sind geeignete Kriterien anhand von Anwendungsszenarien zu definieren und in Versuchen zu prüfen. Das Schließen von Positionsschleifen, also das Wiedererkennen schon besuchter Orte soll berücksichtigt werden. Anwendungsszenarien können sein: SLAM auf dem Pioneer-Roboter, 3D-Modellierung durch freie Bewegung, Modellierung von Gebäuden, Beobachtung dynamischer Objekte (Personen, Roboter, Drohnen) durch mehrere Kinect-Sensoren. Die Installation unter der aktuellen ROS-Version soll nachvollziehbar dargestellt werden. Die besondere Schwierigkeit der Arbeit liegt beim Einarbeiten in teilweise komplizierte Ansätze aktueller Robotertechnologien und beim Umsetzen in lauffähige Expe rimente.

Kolloqium: 14.11.2014

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn

Download: A1-Poster

Masterarbeit von Brandolf Gumz

Freitag, September 19, 2014

Evolution regulärer Ausdrücke zur Segmentierung digitalisierter Keilschrifttafeln in 3D

Ziel der Arbeit ist die Segmentierung dreiecksvernetzter Punktwolken digitalisierter Keilschrifttafeln zur Detektion von Oberflächen und Bruchstellen. Hierzu sollen in der Punktwolke Flächenmerkmale mit dem Blowing-Bubble-Algorithmus bestimmt und anhand von regulären Ausdrücken klassifiziert werden, die mit evolutionären Algorithmen entwickelt werden. Die Applikation und Ergebnisse sind in geeigneter Weise zu evaluieren.

Kolloqium: 19.09.2014

Betreuer: Prof. Dr. Friedhelm Mündemann, Dipl.-Inform. Ingo Boersch

Bachelorarbeit von Christoph Gresch

Montag, September 15, 2014

Systematic Review zum Data Mining zur Prognose von Punktdurchmessern beim Widerstandspunktschweißen

Ziel der Arbeit ist eine systematische Übersichtsarbeit zum Stand der Forschung zum Thema Data Mining zur Prognose von Punktdurchmessern von Schweißpunkten beim Widerstandspunktschweißen, insbesondere anhand von Verlaufsgrößen. Hierzu sind die relevanten Forschungsergebnisse möglichst vollständig zu identifizieren, darzustellen, zu beurteilen und zusammenzufassen.

Die Bestimmung relevanter Veröffentlichungen soll systematisch nach einer dokumentierten Methodik erfolgen. Hierzu sind geeignete Suchstrings, Datenquellen, Vorgehensweisen und Kriterien zur Auswahl und Relevanz von Publikationen zu definieren. Die ausgewählten Publikationen sind tabellarisch zusammenzufassen und inhaltlich einzeln kurz vorzustellen. Hierbei sollte sich an vorher formulierten Fragestellungen orientiert werden, wie bspw. Merkmalsdefinition, Modellart, Evaluationsmethode, Prognosegüte oder Datenbasis, die zur Weiterführung des FHB-Projektes sinnvoll sind

Kolloqium: 15.09.2014

Betreuer: Dipl.-Inform. Ingo Boersch, Dipl. Ing. Christoph Großmann (Technische Universität Dresden)

Download: A1-Poster

Data Mining Cup 2014: Masterstudenten der Informatik unter den besten 10 Teams

Dienstag, Juli 15, 2014
Bereits zum Zeitpunkt einer Online-Bestellung voraussagen, welche Artikel des Versandhändlers vom Kunden zurückgeschickt werden? Studierende des Masterstudiengangs Informatik der Fachhochschule Brandenburg (FHB) haben dazu ein treffsicheres Modell entwickelt.
Beim Data-Mining-Cup 2014 – einem der größten internationalen Studentenwettbewerbe für intelligente Datenanalyse – belegen die Studierenden Benjamin Hoffmann, Maik-Peter Jacob und Daniel Kiertscher mit ihren Lösungen dieser Aufgabe den siebten und neunten Platz. Damit befinden sie sich in Augenhöhe mit der Technischen Universität Darmstadt und dem Karlsruher Institut für Technologie, die sich ebenfalls unter den Top Ten befinden. Anhand historischer Kaufdaten eines Onlineshops sollte ein Modell berechnet werden, welches für neue Bestellungen prognostiziert, ob der jeweilige Kauf zu einer Retoure führt.

Am Data-Mining-Cup 2014 Anfang Juli in Berlin nahmen insgesamt 125 Teams aus 28 Ländern teil. An der Fachhochschule Brandenburg ist Data Mining im Forschungs- /Projektstudium im Projekt "Künstliche Intelligenz" des Masterstudiengangs Informatik verankert.

Masterstudenten auf den Informatiktagen 2014: Projektergebnisse aus dem Data Mining in Industrieprozessen

Mittwoch, März 05, 2014

Unter dem Motto „Big is beautiful“ trafen sich am 27./28.März 2014 Studierende, Lehrende und Vertreter aus der Wirtschaft am HPI in Potsdam zu der Nachwuchsveranstaltung der GI "Informatiktage 2014". Das eingereichte Paper der Masterstudierenden im Data Mining-Projekt wurde angenommen:

  • Benjamin Hoffmann, Josef Mögelin, Benjamin Arndt, Curtis Mosters: Data Mining beim Widerstandspunktschweißen: Vorgehensweise und erste Ergebnisse der Prognose von Punktdurchmessern, Tagungsband Informatiktage 2014, HPI Potsdam

Abstract: Beim Widerstandsschweißen spielt der richtige Zeitpunkt des Elektrodenwechsels eine entscheidende Rolle für die Festigkeit der Verbindung und den Ressourcenverbrauch. Wegen einer latenten Verbindungsbildung kann der dafür wichtige Punktdurchmesser aber nicht direkt während des Schweißvorganges gemessen werden. Durch die Vorhersage der Schweißlinse bzw. des Punktdurchmessers mittels eines Prognosemodells könnte die Standmenge optimiert werden. Diese Arbeit beschreibt die Merkmalsextraktion, Merkmalsselektion und Modellerstellung an einer realen Datenmenge. Das finale Modell kann den Linsendurchmesser eines Schweißpunktes zerstörungsfrei in mehr als 92% der Fälle korrekt vorhersagen.

Betreuer der Arbeit: Dipl.-Ing. Christoph Großmann, Dipl.-Inform. Ingo Boersch

Studienarbeit zur automatischen Klassifikation von Vogelstimmen

Freitag, Februar 28, 2014

Joseph Mögelin: Erstellung eines Klassifikationsmodells zur Identifikation von Vogelarten anhand ihrer Singstimme mit Merkmalsextraktion durch Marsyas

Vögel können eine wichtige Rolle im Leben und Kultur der Menschen darstellen. Selbst in Großstädten kann man sie hören und fast jeder erkennt besonders markante Vögel an ihrer Singstimme. Für einige Menschen, wie zum Beispiel Musiker, können ihre Lieder eine Quelle der Inspiration sein. Doch Vögel singen nicht nur aus Vergnügen. [CS95] schrieb, dass Geräusche nur produziert werden, wenn sie auch benötigt werden und damit hat jedes Geräusch eine Bedeutung.

So nutzen also Vögel oder Tiere im Allgemeinen ihre Stimme zur Kommunikation untereinander. Für biologische Forschungen und der Umweltüberwachung ist die Identifizierung von Tieren sehr bedeutsam. Insbesondere bei der Lokalisierung kann sie eine große Rolle spielen, schließlich werden Tiere oftmals zuerst gehört, bevor sie gesehen werden[KM98, LLH06]. Flugzeugunternehmen setzen bereits Systeme zur Vogellokalisierung ein, um Kollisionen zu vermeiden[CM06]. Es gibt also eine Vielzahl von sinnvollen Einsatzgebieten. Eine Menge Wissenschaftler, Umweltaktivisten und Biologen sind an der automatischen Klassifizierung interessiert. Darüber hinaus müssen oftmals Experten eingesetzt werden, um Vogelarten zu identifizieren. Durch Klassifizierungssysteme könnten Ornithologen entlastet werden und effizienter arbeiten.

An der FH Brandenburg wird geplant, bei der Buga 2014, eine Applikation zur Echtzeiterkennung von Vogelarten zu entwickeln und einzusetzen.

Download: Studienarbeit

Bachelorarbeit von Jakob Hasse

Freitag, Oktober 18, 2013

Improving Local Navigation by Application of Scan Matching Techniques in Mobile Robotics

Ziel der Arbeit ist die Untersuchung verschiedener Registrierungsalgorithmen in Bezug auf die Navigation eines mobilen Roboters vom Typ KUKA. Hierzu sind geeignete Testszenarien zu definieren sowie Versuche zu planen. Anhand selbst gewählter Kriterien sind die Algorithmen zu bewerten und ein begründeter Umsetzungsvorschlag abzugeben. Der Roboter kann simuliert werden. Es werden die Auswirkungen von Scan-Matching-Techniken auf die lokale Navigation eines KUKA omniRob untersucht. Eine Verbesserung der Navigation soll vor allem vor und in vom Roboter befahrenen engen Bereichen angestrebt werden. Bisher korrigierte der Roboter seine Position aufgrund fehlender Genauigkeit sehr häufig vor engen Stellen. Weiterhin soll eine Änderung an der Navigationskomponente in Situationen nach angewandtem Scan-Matching für eine optimierte Fahrt sorgen. Da der reale omniRob noch nicht mit allen Implementierungen verfügbar ist, wird durchgehend in einer Simulation gearbeitet.

Kolloqium: 18.10.2013

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn • Fachhochschule Brandenburg • Dipl.-Math. Christian Rink M. Sc., Dipl.-Math. techn. Daniel Seth • Institut für Robotik und Mechatronik des Deutschen Zentrums für Luft- und Raumfahrt

Download: A1-Poster, Abschlussarbeit

Bachelorarbeit von Franziska Krebs

Donnerstag, September 19, 2013

Definition und Implementierung einer CTS2-standardisierten Abbildung von Terminologien aus dem Bereich des Infektionsschutzes

Ziel der Arbeit ist die Abbildung eines Begriffssystems des Robert-Koch-Institutes aus dem Bereich des Infektionsschutzes in das vom Fraunhofer FOKUS entwickelte System CTS2-Le (RDFS-Ontologie) gemäß CTS2-Standards von OMG und HL7. Die Abbildung ist in geeigneter Weise zu evaluieren. Die Eignung der Abbildung zur Wissensrepräsentation ist durch die Implementierung eines einfachen Terminologie-Laders und eine erfolgreiche Kompetenzprüfung anhand geeignet formulierter Kompetenzfragen nachzuweisen.

Kolloqium: 19.09.2013

Betreuer: Dipl.-Inform. Ingo Boersch, Dr.-Ing. Andreas Billig (Fraunhofer FOKUS, Kompetenzzentrum E-HEALTH)

Download: A1-Poster, Abschlussarbeit

Masterarbeit von David Saro

Freitag, August 30, 2013

Automatische und assistierende Personaleinsatzplanung basierend auf CSP

Das vorliegende Problem der Personaleinsatzplanung ist ein Zuordnungsproblem und gehört der Klasse NP-schwer an. Im Allgemeinen sind solche Probleme nicht in praktisch angemessener Zeit lösbar. Mit problemspezifischen Suchalgorithmen können diese Probleme dennoch auf aktueller Rechentechnik gelöst werden.

Diese Masterarbeit hat das Ziel, das Problem der Personaleinsatzplanung des Unternehmen Coffee Corner zu lösen. Hierbei geht es um die Zuordnung von Mitarbeitern M zu Arbeitsstationen A zu bestimmten Zeiteinheiten Z, wobei M, A und Z Mengen darstellen. Es müssen demnach |A| · |Z| Variablen belegt werden, welche jeweils |M| Werte annehmen können. Der aufgespannte Suchraum umfasst |M||A|·|Z| Zuordnungsmöglichkeiten und somit 10 hoch 875 potenzielle Lösungen. Doch nicht jede Zuordnungsmöglichkeit ist eine gültige Lösung. Ob eine Zuordnungsmöglichkeit eine gültige Lösung ist, wird durch die Einhaltung von Nebenbedingungen entschieden. Ein Ausprobieren aller Möglichkeiten mit Prüfung auf Einhaltung der Nebenbedingungen ist bei steigender Anzahl von Arbeitsstationen, Mitarbeitern und Zeiteinheiten zeitlich zu aufwändig.

Ziel der Arbeit ist eine Untersuchung der Constraint-Propagierung zur Lösung von Personaleinsatzproblemen und die prototypische Umsetzung. Die Evaluation umfasst die Definition geeigneter Kriterien zur Wertung von Plänen, Auswahl von Constraintoptimierungs-Bibliotheken, Heuristiken zur Reduktion des Suchraumes sowie die Integration von Planung und Neuplanung anhand eines realen Anwendungsfalles in der Stadt Brandenburg.

Kolloqium: 30.08.2013

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Michael Syrjakow

Download: A1-Poster

Masterprojekt: Data Mining Cup 2013 "Kauft sie oder kauft sie nicht?"

Montag, Juli 15, 2013

Data Mining Cup 2013 - "Kauft sie oder kauft sie nicht?"

Vier Studenten des Masterprojektes Data Mining nahmen am diesjährigen Data Mining Cup teil und erreichten den Platz 22 von 66 eingereichten Lösungen.

Folgendes Szenario sollte modelliert werden: Ein Webshop beobachtet seine Besucher (überwiegend Frauen), während sie sich auf der Webseite bewegen. Es soll die Frage beantwortet werden, ob der Besucher seinen Warenkorb letztendlich bestellt oder nicht. Die Trainingsdaten umfassen 50.000 Sessions mit Kundendaten (Alter, Adresscode, Zahlungsanzahl, Acountlebensdauer, Datum der letzten Bestellung, Score, ...) und Sessiondaten (Dauer der Session, Preisverlauf angesehener Artikel, Preise in den Warenkorb gelegter Artikel, Zustandsverlauf im Bestellprozess, ...). Die Klasse ist dann "Session endet mit Bestellung" oder "Session endet ohne Bestellung". Hintergrund der Aufgabe ist das gewünschte automatische Anbieten von Rabatten oder Upselling-Möglichkeiten während einer Session.

Das Team legte im Data Mining-Prozess besonderen Wert auf die zuverlässige Schätzung des zu erwartenden Generalisierungsfehlers, dessen Größenordnung durch die endgültigen Fehlerwerte bestätigt wurde. Es gelang dem Team 93.8% der unbekannten Kundensessions richtig zu klassifizieren (zum Vergleich erreichte das Gewinnerteam der Uni Dortmund eine Erfolgsrate von 97.2%). Eine Übersicht aller teilnehmenden Teams im nebenstehenden Poster.

Es ist also mit Data Mining möglich, das Nutzerverhalten in diesem Szenario sicher vorherzusagen, wahrscheinlich sogar, bevor dem Nutzer selbst seine Entscheidung bewusst wird.

Masterarbeit von Johannes Scheer

Montag, Juli 01, 2013

Automatisierte Merkmalsextraktion und Klassifizierung von Vogelstimmen mittels genetischer Programmierung

Ziel der Arbeit ist die Evaluation einer Methode zur automatischen Merkmalsextraktion mit Genetischem Programmieren. auf diesem Wege sollen Merkmale definiert werden, die sich zur Klassifikation von Vogelstimmen eignen. So erzeugte Merkmale können zum Einen genutzt werden, um von Ornithologen erstellte Langzeitaufnahmen zu bearbeiten oder für Hobby-Ornithologen, um mit einer Smartphone-Applikation Vögel aufzunehmen und zuzuordnen.

In der Arbeit soll aufbauend auf Arbeiten an der Universität Dortmund von Ingo Mierswa und Katharina Morik die prinzipielle Eignung des Ansatzes untersucht und anhand einer praktischen Umsetzung bewertet werden. Schwerpunkt sei hierbei die erfolgreiche und weiterverwendbare Umsetzung des Evolutionszyklus im GP-Framework ECJ.

Kolloqium: 28.06.2013

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Michael Syrjakow

Download: A1-Poster

Data Mining – 1. Studentischer Workshop

Dienstag, Mai 28, 2013

Data Mining – 1. Studentischer Workshop
28.05.2013, FH Brandenburg, Informatikzentrum, R 131, 9:30 Uhr

Wir laden alle Interessierten zu einem zwanglosen Austausch zu Werkzeugen, Vorgehensweisen und Aufgabenstellungen im Bereich der Datenanalyse ein.

Programm

  • 09:30 Welcome
  • 09:40 Data Mining beim Widerstandspunktschweißen (B. Arndt, C. Mosters)
  • 10:00 Kauft sie oder kauft sie nicht - Data Mining Cup 2013 (J. Mögelin, B. Hoffmann)
  • 10:25 Evolution regulärer Ausdrücke zur Klassifikation (I. Boersch)
  • Abschlussdiskussion

Masterprojekt: Data Mining beim Widerstandsschweißen

Sonntag, März 24, 2013

Anwendungsbeispiel zur Klassifikation von Wertereihen bei industriellen Daten

Widerstandspunktschweißen ist das im Stahl-Karosseriebau am häufigsten verwendete Fügeverfahren. Dabei spielt der richtige Zeitpunkt des Elektrodenwechsels eine kritische Rolle. Um haltbare Schweißpunkte zu garantieren, werden die Elektroden anhand pessimistischer, empirisch bestimmter Heuristiken in der Praxis sehr früh gewechselt. Insbesondere beim Schweißen hochfester beschichteter Bleche mit hohen Strömen erreichen die Heuristiken ihre Grenzen. Könnte die Standzeit der Elektroden anhand eines Prognosemodells optimiert werden, sind jährliche volkswirtschaftliche Einsparungen an den Elektroden-Rohstoffen (überwiegend Kupfer) in Millionenhöhe zu erwarten.

Die Arbeitsgruppe Thermisches Fügen der TU Dresden untersucht die Verschleißmechanismen der Elektrodenkappen mit dem Ziel neue zerstörungsfreie Prüfverfahren für das Widerstandspunktschweißen zu entwickeln. In Kooperation mit dem Masterprojekt Data Mining der FH Brandenburg erfolgt eine Untersuchung, mit welcher Güte sich der für die Stabilität eines Schweißpunktes relevante Punktdurchmesser aus Verlaufsgrößen des Schweißvorganges bestimmen lässt. Die besondere Schwierigkeit der Data Mining-Aufgabe besteht in der Definition geeigneter Merkmale aus Wertereihen und der Schätzung der Modellgüte bei dem vorliegenden geringen Umfang der klassifizierten Stichprobe. Der Prozess selbst ist nach Ansicht der Technologen schwierig zu modellieren, da beim Schweißen hochfester Stähle mit hohen Stromstärken Spritzer flüssigen Materials auftreten können.

Daten

Die Rohdaten wurden im Schweißlabor der TU Dresden experimentell erhoben und liegen pro Schweißvorgang in Form multivariater Zeitreihen als TDMS-File vor. Hierzu wurden mit sechs Elektroden je 2000 Schweißpunkte geschweißt und dabei 10 Prozessgrößen (sog. Kanäle), wie bspw. Spannung, im Kilohertz-Bereich aufgezeichnet. An 400 Schweißpunkten dieser Stichprobe wurde die Zielgröße Punktdurchmesser manuell bestimmt. Die Daten sind nicht öffentlich.

Data Cleaning und Explorative Analyse

Die Daten enthielten fehlende Werte, Triggerfehler, Ausreißer, Fehlmessungen sowie Störungen durch nicht erfasste Einflussgrößen, wie parallele Nutzung von Kühlkreisläufen durch andere Projekte. Die explorative Analyse half Datenfehler aufzudecken und zeigte deutlich die Prozessphasen des Schweißprozesses, führte jedoch zu keinen offensichtlichen Merkmalen.

Modellierung

Zur Merkmalsdefinition wurden die Prozessgrößenmit einer parameterfreien Methode [Wit83] kanalweise segmentiert und segmentweise deskriptive statistische Merkmale berechnet. Zusätzlich wurden neue Kanäle durch Verknüpfung bestehender Kanäle erzeugt [AH12]. Aus der damit definierten Menge von mehr als 1000 Merkmalen wurde anhand von klassenbasierten Filtermethoden eine geeignete Untermenge relevanter Merkmalen bestimmt. Bei der Evaluation linearer Modelle [Fah09] und Modellbäumen erwiesen sich Modellbäume [Qui92] als bessere und zudem transparente Wissensrepräsentation [MM12].

Als Erfolg wurde eine Prognose des Punktdurchmessers in einem 10%-Intervall um den echten Wert definiert (Erfolgsrate) und zur Modellauswahl der mittlere quadratische Fehler verwendet. Die Datenmenge wurde im Holdout-Verfahren disjunkt in 90% Trainings- und 10% Testdaten geteilt. Die Modellauswahl erfolgte auf den Trainingsdaten mit 10-facher Kreuzvalidierung. Die Analyseskripte und Zwischendatenmengen wurden versioniert, somit sind alle Ergebnisse mit den Originaldaten reproduzierbar.

Erste Ergebnisse

Der gewählte Ansatz konnte den echten Punktdurchmesser in 75% der Testfälle im 10%-Intervall korrekt vorhersagen. Dies ist unter Berücksichtigung der technologischen Schwierigkeiten ein gutes Ergebnis. Das finale Modell ist menschenlesbar und seine Plausibilität kann mit den Prozessexperten diskutiert werden. Die Datenverarbeitungswerkzeuge wurden entwickelt und können für ähnliche Analysen verwendet und erweitert werden. Ein nächstes Projekt wird das Analyse-Verfahren auf einen technologisch einfacheren Schweißprozess anwenden und um strukturbasierte Merkmale erweitern.

[AH12] Benjamin Arndt and Benjamin Hoffmann. Segmentierung und Merkmalsdefinition mehrkanaliger Messdaten zur Prognose bei einem punktförmigen Fügeverfahren. In 14. Nachwuchswissenschaftlerkonferenz, Brandenburg, 18.04.2013.

[Fah09] Fahrmeir, L., Künstler, R., Pigeot, I. and Tutz, G. (2009, 5., verb. Aufl.). Statistik - Der Weg zur Datenanalyse. Springer Verlag, 2009

[MM12] Curtis Mosters and Josef Mögelin. Merkmalsselektion und transparente Modellierung zur Prognose einer Zielgröße bei einem punktförmigen Fügeverfahren. In 14. Nachwuchswissenschaftlerkonferenz, Brandenburg, 18.04.2013.

[Qui92] Ross J. Quinlan. Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, pages 343–348. Singapore, 1992.

[Wit83] Andrew P. Witkin. Scale-space filtering. In Proceedings of the Eighth international joint conference on Artificial intelligence - Volume 2, IJCAI’83, pages 1019–1022, San Francisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

Abb 1: Das vorsichtige Öffnen eines Schweißpunktes ist aufwändig, aber zur korrekten Vermessung des Punktdurchmessers notwendig

MASDAR CITY - Personal Rapid Transit (Projekt Künstliche Intelligenz im WS12/13)

Dienstag, Februar 19, 2013

 Fahrauftrag und KodierungPRT - Personal Rapid Transit

Ein PRT-System ist eine Flotte kleiner Fahrzeuge, die jeweils eine oder wenige Personen ohne Zwischenhalt zu individuellen Zielen transportieren. Das derzeit größte geplante PRT-Netz mit 30.000 3000 Fahrzeugen entsteht in Masdar City, einer am Reißbrett entworfenen Stadt in der Wüste der Vereinigten Arabischen Emirate. In Masdar City sollen 50.000 Menschen CO2- und energieneutral leben und arbeiten. Fahrzeuge mit Verbrennungsmotoren wird es dort nicht geben. Eine erste Testinstallation eines PRT-Netzes der Firma 2getthere (Niederlande) mit 10 Fahrzeugen, zwei Personen- und drei Frachtstationen ist seit August 2011 in Masdar City in Betrieb.

Probleme im PRT-Netz entstehen bei Überlastung (globaler Stau) oder durch liegenbleibende Fahrzeuge. Der damit verbundene Verlust befahrbarer Strecken erfordert ein Neuplanen von Fahrtrouten. Und hier kommen Sie ins Spiel.

Aufgabe

Ihr Roboter erhält den Auftrag, eine oder mehrere Personen abzuholen und zum Ziel zu bringen. Das Streckennetz ist ein einfaches Gitter, in dem es allerdings zu Störungen und damit unbefahrbaren Kreuzungen kommen kann. Die gute Nachricht ist, das Sie über globales Wissen verfügen und die aktuelle Karte der befahrbaren Wege dem Roboter kurz vor dem Start zur Verfügung gestellt wird.

Es ist eine der schwierigsten Aufgaben der letzten Jahre in diesem Projekt, da zusätzlich zur Roboterkonstruktion und -programmierung auch die Breitensuche eines optimalen Pfades zwar nach Lehrbuch aber mit vielen Detailproblemen zu lösen ist. Diesmal existiert keine Minimallösung (eingängig, wiederholbar, einfach zu bauen [BHL98]) - entweder ALLE Komponenten erfüllen ihre Aufgabe oder das System scheitert. Der Umfang der zu lösenden Teilprobleme erfordert eine klare Arbeitsteilung im Projekt, 10 Studenten in vier Teams nahmen teil.

Folgende Roboter traten an, verlinkt sind die Projektberichte:

Die Systeme zeigten hervorragende Leistungen im Wettbewerb am 17.01.2013, alle funktionierten. Die Wege wurden korrekt geplant, nur die Zeitbegrenzung von zwei Minuten führte zu einigen nicht transportierten Passagieren und Lebenspunkte gingen verloren. Das Finale gewann Crawling Hornet vor V4P8S: Punkte.pdf 

Fotos vom Wettbewerb: Fotos vom Wettbewerb

[BHL98] Boersch I., Heinsohn, J; Loose, H.: AMS in der Lehre. In: Dritter Brandenburger Workshop Mechatronik. Brandenburg, 1998

Platz drei des Innovationspreises 2012 für David Walter

Donnerstag, Dezember 13, 2012

Preisträger und Honorarprofessoren Unter dem Motto „innovativ und exzellent“ zeichnete die Fachhochschule Brandenburg am 7. Dezember Nachwuchswissenschaftler mit dem Innovationspreis 2012 aus. Der Preis wird für herausragende, an betrieblichen Bedürfnissen orientierte Innovationen vergeben und von Unternehmen der Region gestiftet.

Platz drei des Innovationspreises wurde in diesem Jahr an David Walter vergeben, der in seiner Masterarbeit erfolgreich ein Verfahren zur Prognose des Stromverbrauches für die Stadtwerke Brandenburg an der Havel GmbH entwickelte.

Bachelorarbeit von Benjamin Hoffmann

Dienstag, Oktober 02, 2012

Entwicklung und Evaluation eines multimodalen Empfehlungssystems für Lokationen

In den vergangenen Jahren haben multimodale Anwendungen den Schritt von der Forschung in die Praxis gemacht. Ziel der Kombination verschiedener Modalitäten wie Sprache und Touch (Berührung) ist es, eine bessere und natürlichere Interaktion zwischen Benutzer und System zu ermöglichen.

In dieser Arbeit wurde ein leichtgewichtiges, multimodales, karten-basiertes Empfehlungssystem für das Auffinden von Lokationen zur Erfüllung von Aufgaben entwickelt. Existierende Dienste und Komponenten – wie zum Beispiel zur Georeferenzierung oder zur Spracherkennung – wurden erfolgreich zu einem funktionierenden System kombiniert. Der Einsatz von Webtechnologien wie HTML, CSS und JavaScript vereinfacht die Portierung der mobilen Android-App auf andere Plattformen. Eine in JavaScript definierte Grammatik erlaubt verschiedene Varianten bei der Spracheingabe.

Im Anschluss an die Entwicklung wurde eine Evaluation des Systems mit zwölf Versuchsteilnehmern vorgenommen. Diese beinhaltete neben dem Lösen von jeweils sechs Aufgaben die Beantwortung zweier Fragebögen. Es wurde insbesondere untersucht, ob Daten sozialer Netzwerke den Benutzer bei der Auswahl von Lokationen unterstützen können (H1) und ob Sprache die Eingabe erleichtert (H2). Die Befragung zeigt, dass 11 von 12 Personen der Meinung sind, dass soziale Netzwerke bei der Entscheidungsfindung helfen. Zehn der 12 Probanden bevorzugten die (initiale) Eingabe via Sprache. Nach dem Lösen der Aufgaben verbesserte sich die Bewertung der Nützlichkeit von Spracheingabe bei fünf Personen – nur eine Person änderte ihre Einschätzung zum Negativen. Beide Hypothesen ließen sich somit bestätigen.

Kolloquium: 02.10.2012

Betreuer: Prof. Dr. Jochen Heinsohn, Dipl.-Inform. Ingo Boersch, Dr. Tatjana Scheffler (DFKI), Dipl.-Inf. Rafael Schirru (DFKI)

Download: A1-Poster, Abschlussarbeit

Bachelorarbeit von Jonas Preckwinkel

Dienstag, Oktober 02, 2012

Repräsentation medizinischen Wissens mit Drools am Beispiel der Adipositas-Leitlinie

Ziel der Arbeit ist die Untersuchung, inwieweit sich die Rule Engine Drools zur Repräsentation und Verarbeitung medizinischen Regelwissens eignet. Dazu soll die Leitlinie zur Prävention und Therapie von Adipositas prototypisch in einem wissensbasierten System modelliert werden. Des Weiteren soll ein Benutzerhandbuch für Droolseinsteiger entstehen.

Praktisches Ergebis der Arbeit sei ein prototypisches wissensbasiertes System zum Laden und Verarbeiten (Vorwärtsverkettung) einer Regel- und Faktenbasis (Patientendaten) zur Adipositas-Therapie.

Kolloquium: 02.10.2012

Betreuer: Prof. Dr. Jochen Heinsohn, Dipl.-Inform. Ingo Boersch

Download: A1-Poster, Abschlussarbeit, Programm, Quelltext, Wissensbasis (zip, 11MB)

Zum Start des Programmes die ZIP-Datei auspacken und das Programm mit einem Doppelklick auf 'Quellcode\DroolsGui\DroolsGUI.jar' starten. Im Programm zunächst die vier Bestandteile der Wissensbasis (dataModel.drl, diagnose_rules.drl, testPatienten.drl und therapie_rules.drl) im Verzeichnis 'Quellcode\Drools Rule Files' laden, die Wissensbasis kompilieren und zum Schluss die Vorwärtsverkettung starten.

Für eigene Versuche können die DRL-Files (Wissensbasis als Textdatei) mit einem beliebigen Editor verändert oder eigene DRL-Files verwendet werden.

Bachelorarbeit von Johann–Sebastian Pleban

Donnerstag, September 27, 2012

Entwurf und Implementierung von Suchverfahren am Beispiel des Spiels “Rush-Hour” mit Visualisierung der Lösungsfindung

Ziel der Bachelorarbeit ist die Entwicklung einer Applikation zur Visualisierung einfacher Suchalgorithmen am Beispiel des Rushhour-Problems.

Insbesondere soll das Laden verschiedener Problemkonfigurationen der Rush-Hour-Domäne in einer geeigneten textuellen Repräsentation, das Finden einer oder aller Lösungen sowie das Verfolgen der Arbeitsweise der Suchalgorithmen (Tiefensuche, Breitensuche, A*) ermöglicht werden. Der Zustandsraum der Suchprobleme soll in geeigneten Metriken (bspw. Anzahl der Knoten, Anzahl der Lösungen) dargestellt werden.

Kolloquium: 27.09.2012

Betreuer: Prof. Dr. rer. nat. Rolf Socher, Dipl.-Inform. Ingo Boersch

Download: A1-Poster

Bachelorarbeit von Marco Knietzsch

Dienstag, September 18, 2012

Modellierung der Studien- und Prüfungsordnung des Studiengangs Bachelor Informatik in OWL

Ziel der Bachelorarbeit ist die ontologische Modellierung der Studien- und Prüfungsordnung der Informatik.

Die Ordnung soll in maschinenverständlicher Form, d.h. zugänglich für Visualisierung, Navigation, Abfragen und Inferenzen im Sinne des Semantic Web repräsentiert werden. Das konkrete Ziel ist eine Ontologie, die zu bestimmten Themen des Studiums befragt werden kann. Sie soll alle Fragen beantworten, die auch mit der originalen Ordnung beantwortet werden. Zudem sollten Schlüsse gezogen werden können, die weiteres Wissen generieren. Fragen könnten sein:"Was sind Pflichtfächer?", "Muss ich ein Praktikum machen?", "Wie lang ist die Bearbeitungszeit für eine Bachelorarbeit?".

Die Ontologie soll sich auf andere (ähnliche) Prüfungs- und Studienordnungen erweitern lassen.

Kolloquium: 18.09.2012

Betreuer: Prof. Dr. Jochen Heinsohn, Dipl.-Inform. Ingo Boersch

Download: A1-Poster

Masterarbeit von Stephan Dreyer

Mittwoch, August 29, 2012

Interaktive Evolution zur Assistenz bei der Einrichtungsplanung

Die Planung der Inneneinrichtung von Räumen ist oft aufwändig und zeitintensiv, da ein weites Spektrum verschiedenster Einrichtungsgegenstände verfügbar ist und diese fast beliebig kombiniert werden können. Diese Arbeit schlägt interaktive evolutionäre Algorithmen zur Assistenz bei der Einrichtungsplanung vor. Dazu werden zunächst die Bestandteile der interaktiven Evolution genauer definiert und Arten der interaktiven Selektion vorgestellt. Anschließend wird die Konzeption und Entwicklung des Softwaresystems dokumentiert.

Zur Verringerung der Benutzerermüdung wird die Methode der Sparse Fitness Evaluation umgesetzt. Es werden Versuche mit der entwickelten Software durchgeführt und aufgetretene Probleme diskutiert. Abschließend gibt die Arbeit einen Ausblick für eine weitere Entwicklung.

Kolloqium: 29.08.2012

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Michael Syrjakow

Download: A1-Poster, Masterarbeit, Quelltexte (85MB)

Software: Furny-1.0.zip in ein beliebiges Verzeichnis entpacken, in dieses Verzeichnis wechseln und den gewünschten Teil mit den .bat-Dateien starten

Sailing: Robot vs. human

Dienstag, August 14, 2012
Bekanntmachung Mission Agent Sairo (ein Programm zur Steuerung des autonomen Segelbootes) tritt gegen Jochen Heinsohn in einem Up-and-down-Kurs auf dem Beetzsee an. Die Navigationsaufgabe entspricht einer Einzelaufgabe beim WRSC und besteht aus dem Überqueren einer 3m-breiten Startlinie, Fahrt gegen den Wind um eine Boje gegen die Uhrzeigerrichtung und Rückkehr über die Startlinie

Mission

The objective of the navigation contest is to evaluate a boat’s ability to accurately navigate a short upwind‐downwind course, all without manual between two red marks sailing windward to a mark in approximately 20‐60 m distance. After rounding the mark on port, the boat shall sail between the red marks again.
[Sailing instructions, World Robotic Sailing Championship / International Robotic Sailing Conference 2011, Universität zu Lübeck, online]

Regeln

  • 20‐60m langer Kurs mit einer Wende
  • Abwechselnd drei Versuche, die beste Runde zählt
  • Koordinaten der Bojen sind erst kurz vorher bekannt
  • Zeitmessung beginnt bei Linienüberquerung
  • Keine Punkte in der Runde bei: Bojenberührung,manuellem Eingriff bei Sairo
  • Start gegen den Wind

Ergebnisse

Fotos

Results
Table: Winner at 14.08.2012 is human

waypoints of the agent
Fig: Waypoints of the agent

Screenshot mission control station
Fig: Screenshot mission control station

Masterarbeit von David Walter

Freitag, Juni 01, 2012

Analyse und Optimierung der Prognosegüte des Strombedarfs als Grundlage der Querverbundsoptimierung der Stadtwerke Brandenburg

Es gilt das vorhandene proprietäre Softwaresystem zur Ressourcenplanung und Erstellung von Bedarfsprognosen zu untersuchen. Dabei soll in der Datenanalyse die Güte der bisherigen Prognosen analysiert werden und der Zusammenhang zwischen dem Strombedarf im Netzgebiet und den messbaren exogenen Größen untersucht werden. Um die Prognosegüte zu verbessern, werden verschiedene Methoden zur Lastprognose evaluiert, das vorhandene System auf Optimierungsmöglichkeiten untersucht und ein Prognoseverfahren implementiert.

Neben der Implementierung von JForecast wurden Prognosemodelle aus dem vorhandenen Softwaresystem mit verschiedenen Parametersetups evaluiert und mit einem Testszenario die Ergebnisse verglichen.

Kolloquium: 01.06.2012

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dr. Tino Schonert (Stadtwerke Brandenburg an der Havel GmbH), Dipl.-Inform. Ingo Boersch

Download: A1-Poster

Erste autonome Motorfahrt des Segelroboters

Mittwoch, April 18, 2012

Ende April scheint der Segelroboter mit der neuen Architektur bereit für die erste Mission: autonome Fahrt zu einem Zielpunkt - ohne Segel mit Motor. Ideale Bedingungen bot hierzu das Gelände des Märkischen Seglervereins Brandenburg nahe der Regattastrecke, bspw. ein Ruderboot und Steg. Wetterbedingungen: leicht bewölkt, trocken, 16°C, Windstärke 0-1.

Masterstudenten beim Aufbau des Segelroboters

Mehr Fotos

Folgendes sollte getestet werden:

1. Handlebarkeit:

  • Transport Boot und Team
  • Inbetriebnahme am Wasser (Mast, BootsPC starten, GPS-Tracker aktivieren, Boot schließen)

2. Generelle Anforderungen:

  • Schwimmfähigkeit
  • Wasserdichtigkeit
  • Schlagseite

3. Funktionalität Fernsteuerung:

  • Steuerbarkeit der Aktorik
  • Boot damit navigierbar?
  • Reichweite

4. Funktionalität WLAN:

  • Ad-Hoc-Verbindung realisierbar
  • Reichweite

5. Programm manueller Modus (Fernbedienung + VNC):

  • Sensorwerte anzeigen: Kompass, GPS
  • Werte plausibel?
  • Aktoren tatsächlich ohne Funktion?

6. Programm autonomer Modus:

  • Steuerbarkeit der Aktorik durch BPC
  • Umschalten zwischen den Modi

7. Missionen

  • Mission definieren, übertragen und starten
  • Anfahrt GPS-Punkt (geradeaus, verschiedene Längen) + Halten der Position
  • mit An- und Abschalten des Motors
  • Fahrt Quadrat/Rechteck/Dreieck aus GPS-Punkten
  • Fahrt zu einem Polygon aus GPS-Punkten

8. Laufzeiten der Akkus protokollieren: Boot, Bootsrechner, Ufer-PC

Beim Meilenstein ergab sich eine lange Liste von neuen Aufgaben und insbesondere war der Motor durch den BootsPC nicht mit einer ausreichenden Geschwindigkeit ansteuerbar, so dass der Missionskern des Meilensteins nicht voll erreicht wurde. In zwei Wochen auf ein Neues.

Bachelorarbeit von Bertram Sändig

Freitag, März 09, 2012

Entwicklung und Evaluierung von Clustering-Verfahren für Points of Interest verschiedener thematischer Kategorien

In dieser Arbeit geht es um die Entwicklung einer Anwendung zur Darstellung von konzentrierten Gebieten von Points of Interest (PoIs). Dadurch soll einem Anwender z. B. ein Ballungsgebiet von Restaurants innerhalb des urbanen Umfelds angezeigt werden.

Der Vorgang, Wertemengen nach ihrer Ähnlichkeit (hier nach geographischer Distanz) zu gruppieren, ist eine Disziplin des Data Minings und wird als Cluster-Analyse bezeichnet. Verschiedene Clustering-Verfahren sollen getestet und angepasst werden, um ihre Eignung für die Aufgabenstellung zu bewerten und zu optimieren.

Evaluiert wurden das Minimum spanning tree Clustering, k-Means, sowie ein selbstentwickeltes DK-Means-Verfahren.

Kolloquium: 10.02.2012

Betreuer: Dipl.-Inform. Ingo Boersch, Dr. Inessa Seifert (DFKI)

Download: A1-Poster

Bachelorarbeit von Helge Scheel

Mittwoch, September 28, 2011

Analyse von Matching-Verfahren und Konzeption für eine auf Angebot und Nachfrage basierende Plattform – Prototypische Implementierung am Beispiel einer Lehrstellenbörse

In dieser Arbeit wird das als Matching bezeichnete Zuordnungsproblem zwischen Nachfrage generierenden Benutzern und Angebot repräsentierenden Objekten untersucht. Ziel ist eine automatische, individuelle Auswahl von geeigneten Objekten für den einzelnen Nutzer, die seinen Präferenzen entsprechen. Beschränkt wird diese Problematik auf webbasierte Plattformen, wobei die registrierten Benutzer durch Nutzerprofile beschrieben werden und die Angebote als Objekte angesehen werden, deren Eignung für die einzelnen Nutzer bestimmt werden soll.

Zur Lösung dieses Problems stehen verschiedene Ansätze zur Verfügung. Empfehlungssysteme erstellen Vorschläge basierend auf vorhandenen Bewertungen des Nutzers für Objekte. Die Clusteranalyse gruppiert die Objekte zu Clustern, die eine möglichst homogene Menge an Objekten beinhalten. Eine hohe Eignung wird Objekten aus Clustern unterstellt, aus denen bisher positiv bewertete Objekte stammen. Klassifizierungs- und Regressionsverfahren berechnen eine Klassenzuordnung bzw. eine numerische Prognose, die Aussagen über die Eignung eines Objekts treffen.

Die Verfahren werden hinsichtlich ihrer Eignung für das beschriebene Problem evaluiert. Auf Basis dieser Untersuchung wird ein Konzept für das Anwendungsbeispiel einer Lehrstellenbörse entwickelt und prototypisch implementiert.

Kolloquium: 28.09.2011

Betreuer: Dipl.-Inform. Ingo Boersch, Dipl.-Inform. Dirk Wieczorek (]init[)

Download: A1-Poster

Bachelorarbeit von Paul Lehmann

Mittwoch, September 21, 2011

Matching und Visualisierung von Points of Interest aus sozialen Daten

Ziel der Bachelorarbeit ist eine Untersuchung zu Möglichkeiten der gegenseitigen Abbildung nutzergenerierter interessanter Orte (POI) aus drei sozialen Netzwerken mit Orten aus dem Openstreetmap-Projekt. Die Ansätze sollen prototypisch implementiert und die Matching-Ergebnisse visualisiert und evaluiert werden.

In der Arbeit werden verschiedene Algorithmen oder Kombinationen jener Algorithmen gegenüber gestellt und deren Vor- und Nachteile erörtert. Ferner wird auch darauf eingegangen, welche Fehler bei bestimmten Abläufen auftreten und wodurch sie provoziert werden. Nach dem Matching muss bestimmt werden, wie der resultierende PoI am Ende repräsentiert werden soll, seine kanonische Repräsentation. Die Paare von PoIs sollen dann über einen Webservice verfügbar sein. Zur Veranschaulichung der Ergebnisse werden die PoIs in einer Android-App auf einer Google-Maps-Karte visualisiert, die die Daten von dem Webservice bekommt.

Kolloquium: 21.09.2011

Betreuer: Dipl.-Inform. Ingo Boersch, Dr. Tatjana Scheffler (Deutsches Forschungszentrum für Künstliche Intelligenz GmbH)

Download: A1-Poster, Bachelorarbeit  

Masterarbeit von Christian Freye

Donnerstag, August 25, 2011

Kontext-spezifische Analyse von Benutzerpräferenzen mittels Clustering für Musikempfehlungen auf Grundlage von Semantic-Web-Metadaten

In dieser Masterarbeit wird ein Verfahren vorgestellt, mit dem Benutzerprofile extrahiert werden können, die als Basis für Musikempfehlungen genutzt werden können. Um dieses Ziel zu erreichen werden die Künstler, die ein Nutzer gehört hat, mit Metadaten beschrieben, die im Semantic-Web gefunden werden können.

Nach der Vorverarbeitung der Daten beginnt das Clustering der Künstler. Dadurch werden sie anhand ihres Musikstils in unterschiedliche Cluster unterteilt. Für jedes dieser Cluster wird dann ein Label gewählt, mit dem die zugrunde liegende Musikrichtung beschrieben werden kann. Diese Labels formen dann ein Benutzerprofil, welches ein breites Spektrum des Musikgeschmacks eines Nutzers widerspiegelt.

Durch die Evaluation kann gezeigt werden, dass die extrahierten Benutzerprofile spezifisch für die unterschiedlichen Musikrichtungen der Nutzer sind. Somit können sie als Basis für Empfehlungssysteme dienen, oder in bereits bestehende Anwendungen integriert werden.

Kolloquium: 25.08.2011

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dipl.-Inf. Rafael Schirru (DFKI GmbH), Dipl.-Inform. Ingo Boersch

Download: A1-Poster, Masterarbeit  

Studienarbeit Stephan Dreyer

Montag, Februar 28, 2011

Benutzerschnittstellen für die interaktive Evolution

Das Ziel dieser Arbeit ist, eine Übersicht über Anwendungsfälle, Probleme und Konzepte zur Umsetzung von interaktiven evolutionären Algorithmen zu erstellen. Dabei sollen reale und mögliche Anwendungsszenarien systematisiert werden. Es soll durch eine Literaturrecherche untersucht werden, welche Methoden existieren, um dem Problem der Benutzerermüdung entgegen zu wirken.

Die Methoden sollen in Form einer Taxonomie nach ihren spezifischen Eigenschaften klassifiziert werden. Weiterhin soll untersucht werden, welche Modelle für Benutzerschnittstellen zur interaktiven Fitnessbestimmung existieren. Diese sollen nach ihren Eigenschaften und ihrer Eignung für die parallele Nutzung durch mehrere Benutzer aufgelistet werden. Dazu sollen die speziellen Vorteile und Probleme von Multi-Touch-Systemen untersucht und berücksichtigt werden. Anschließend soll prototypisch eine Software zur Demonstration der Vorteile von Multi-Touch-Systemen entwickelt werden.

Abgabe 28.02.2011

Betreuer: Dipl.-Inform. Ingo Boersch

Download: Studienarbeit

Schülerpraktikum Genepool

Freitag, November 26, 2010

Recherche und Poster zum Thema "GenePool - Implizite Evolution"

Praktikumsarbeit (Gymnasium) von Niklas Schabbel, Timo Boersch und Dennis Schmidt

Download: A1-Poster 

Masterarbeit von Marcin Franc

Donnerstag, August 26, 2010

Poster zur Arbeit von Marcin Franc

Integration von Data-Mining-Methoden zur Analyse der Daten aus dem astrophysikalischen Experiment LOPES

Die Arbeit beschäftigt sich mit der Integration von Data-Mining-Methoden, die zur Analyse der Daten aus dem astrophysikalischen Experiment LOPES benutzt werden können. Den Hauptteil der Arbeit bilden die Implementierung und Beschreibung der Software, welche die vorgenannte Integration durchführt. Der erste Teil dieser Beschreibung besteht aus der Analyse der Anforderungen an die Software zusammen mit der notwendigen Theorie der verwendeten Data-Mining-Methoden. Der zweite Teil ist eine Software- Engineering-orientierte Darstellung der implementierten Lösungen. Da die interessierte Leserschaft sowohl aus Informatikern als auch Physikern besteht, beginnt die Arbeit mit der allgemeinen Vorstellung des LOPES-Experiments und den Grundideen des Data Mining.

Kolloquium: 26.08.2010

Betreuer: Prof. Dr. Jochen Heinsohn (FHB), Prof. Dr. Johannes Blümer (Karlsruher Institut für Technologie)

Download: A1-Poster Masterarbeit 

GeneFlower - Evolution sensomotorischer Kopplungen

Dienstag, Juni 22, 2010

GeneFlower - Evolution sensomotorischer Kopplungen (Hausarbeit)

Zur Demonstration adaptiver Fähigkeiten evolutionärer Systeme entwarf, konstruierte und programmierte Stephan Dreyer das autonome Systeme GeneFlower, das mit einem genetischen Algorithmus eine Mehrzieloptimierung in Richtung eines hohen Lichteinfalls bei wenig Energieverbrauch löst. Umgesetzt wurde ein steady-state GA mit Turnierselektion, altersabhängiger Ersetzungsselektion, 1-Punkt-Crossover und Integermutation. Programmiert wurde in C für das Mikrocontroller-Board AKSEN.

Der Funktionsnachweis wurde durch Fitnessprotokollierung bei stabiler Umwelt erbracht, aber auch bei dynamischer Umwelt reagiert das System wie erwartet mit einer ständigen Anpassung. Das gilt nicht nur für die Änderung des Lichteinfalls, sondern insbesondere auch bei Änderung der Aktorik durch Motorausfall, mechanische Änderung oder Verwickeln der Zugseile.

Intrinsisches Ziel des Systems ist: "Ich stehe in der Sonne und tue nichts".

Download: 2010-06-06 Stephan Dreyer - GeneFlower.pdf 

Bachelorarbeit von Martin Gorges

Mittwoch, Mai 12, 2010

Optimierung und Evaluierung einer Routenabgleichkomponente in einer Ad-Hoc-Mitfahrerzentrale

Ziel dieser Arbeit ist das Testen und Überarbeiten eines bestehenden Mitfahrersuchalgorithmus, der vom Fraunhofer Institut für offene Kommunikationssysteme entwickelt wird.

Mit dem Algorithmus werden passende Mitfahrgesuche für einen Fahrer ermittelt, wobei die Lösung bei Kurzstrecken zum Einsatz kommen soll. Es gilt herauszufinden, unter welchen Bedingungen, wie viele Mitfahrer, in welcher Zeit, für den Fahrer gefunden werden. Weiterhin werden alternative Ansätze entwickelt und miteinander verglichen.

Kolloquium: 12.05.2010

Betreuer: Dipl.-Inform. Ingo Boersch, Dipl.-Inform. A. Kress (Fraunhofer Institut für offene Kommunikationssysteme)

Download: A1-Poster 

Diplomarbeit von Sebastian Bischoff

Mittwoch, November 25, 2009

Konzeption und Umsetzung einer RIA zur untersuchungsbegleitenden Erfassung von RNFLT-Scans und Untersuchung von Klassifikatoren für die diagnostische Unterstützung bei neurodegenerativen Erkrankungen am Beispiel der Multiplen Sklerose

Die retinale Nervenfaserschichtdicke (engl.: retinal nerve fiber layer thickness, RNFLT) ist ein moderner Parameter in der Augendiagnostik. Mittels optischer Kohärenztomographie (engl.: optical coherence tomography, kurz OCT) wird hierbei in einem Augen-Laserscan die Faserdicke der Augennerven in 256 radialen Einzelmesswerten bestimmt. Die RNFLT zeigt dabei spezifische Veränderungen in verschiedenen Krankheitsbildern und hält zunehmend Einzug in die Routinediagnostik.
Im Rahmen einer Studie sollen Modelle zum Vergleich der RNFLT-Veränderungen bei Patienten mit unterschiedlichen Erkrankungen gegenüber Kontrollmessungen bei gesunden Probanden bestimmt werden. Bisherige Vergleichsmethoden umfassen lediglich die mittlere Abnahme der Messwerte und berücksichtigen nicht typische Kurvenveränderungen. Im Rahmen dieser Abschlussarbeit sollen diese Messungen zuerst elektronisch erfasst, verarbeitet und die Auswertungen online verfügbar gemacht werden. Mit Hilfe von Kurvenanalyse und dem Einsatz von Methoden des maschinellen Lernens sollen genauere Lösungen für dieses Klassifikationsproblem entwickelt werden..

Kolloquium: 25.11.2009

Betreuer: Dipl. Inform. Ingo Boersch, Master of Science Sebastian Mansow-Model (mediber GmbH)

Download: A1-Poster, Diplomarbeit

KI-Projekt im SS 2009 - Erfolgreiche Teilnahme am DataMining-Cup 2009

Mittwoch, Juli 01, 2009

KI-Projekt im SS 2009 - Teilnahme am DataMining-Cup

Zwei Teams aus Informatikstudenten der FH Brandenburg belegten im diesjährigen Data Mining Cup (DMC) den 6. und 7. Platz. Die FH Brandenburg war damit die bestplatzierte Fachhochschule in dem Wettbewerb.
Data Mining ist der Versuch, mit mathematischen Modellen komplexe Sachverhalte anhand gegebener Daten zu beschreiben, um die Prozesse hinter den Daten besser zu verstehen und vorherzusagen.
Das Ziel des diesjährigen multinationalen DMC-Wettbewerbs bestand darin, den Abverkauf von acht verschiedenen Büchern an 2 418 Standorten so genau wie möglich zu prognostizieren. Der Buchgroßhändler Libri GmbH stellte dafür als Trainingsmenge die Verkaufszahlen dieser Bücher und anderer 1856 Warengruppen von weiteren 2394 Standorten zur Verfügung, und sorgte somit für den Praxisbezug.

Diplomarbeit von Rene Peschmann

Dienstag, Juni 02, 2009

Entwicklung einer Software zur optimierten Auslagerung in einem Medikamentenlager

Das Ziel der Arbeit ist für ein Lager eine Auslagerungs-Strategie umzusetzen bzw. zu modifizieren, sodass die zu fahrende Gesamtroute für eine Auslagerung bestimmter Produkte so kurz wie möglich ist. Die einzige Nebenbedingung ist, dass der Lagerschlitten, also die Einheit, die für das Greifen der Produkte zuständig ist, für eine Tour nur eine bestimmte Anzahl an Produkten aufnehmen kann. Erst nachdem die aufgenommenen Güter dann an einem definierten Ort abgelegt wurden, kann eine weitere Tour gestartet werden. Abbruchbedingung für die Berechnung der Route kann eine bestimmte Zeit sein, welche vorher definiert wird.

Zusätzlich ist es wichtig zu analysieren, wie effektiv bekannte Verfahren sind und ob diese hinsichtlich des speziellen Problems noch optimiert werden können. Ziel der Diplomarbeit ist die Entwicklung und Umsetzung einer Auslagerungsstrategie für eine Lagerverwaltung. Hierbei sollen Aufträge zur Auslagerung von Gütern angenommen, eine kurze Route berechnet und ein reales Lagermodell angesteuert werden. Der theoretische Schwerpunkt liegt hierbei auf der Einordnung des Routingproblems und der Auswahl eines geeigneten Optimierungsverfahrens. Das Verfahren soll in eine funktionsfähige Applikation umgesetzt werden, welche die Planungskomponente als Modul enthält, sowie eine Visualisierung des Planungsprozesses und der erstellten Routen vornimmt. Die Funktionalität und Geschwindigkeit ist durch geeignete Experimente nachzuweisen.

Kolloquium: 02.06.2009

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Michael Syrjakow

Download: A1-Poster, Diplomarbeit

Vortrag in der Hochschulreihe zum "Data Mining"

Mittwoch, Januar 21, 2009

Populärwissenschaftlicher Vortrag in der Hochschulreihe der FH Brandenburg zum Thema Data Mining

Download: Folien 

Bachelorarbeit von David Saro

Donnerstag, Oktober 02, 2008

Anwendung von Methoden des Data Mining bei der Produktion von Dünnschicht-Solarmodulen

Zielstellung des Themas ist die Untersuchung der Anwendbarkeit von Methoden des Data Mining zum Finden und Modellieren von Abhängigkeiten der an fertigen Solarmodulen gemessenen Größen von den Parametern und Messwerten des Produktionsprozesses. Die auszuwertenden Daten liegen dabei zu Beginn der Arbeit im Wesentlichen als Tabelle vor.

Die Arbeit umfasst in einem ersten Teil die Einordnung der Aufgabenstellung in den wissenschaftlichen Kontext und das Umfeld beim Hersteller, die notwendige Datenvorbereitung (bspw. geeignete Behandlung von fehlenden Werten, Normalisierung, Diskretisierung, Selek-tion und Aggregation von Merkmalen), die Formulierung und Test einfacher Hypothesen (bspw. statistische Abhängigkeit), Darstellung von Werten der deskriptiven Statistik (bspw. Quartile im Boxplot, Scatterplots, Histogramme) und der Korrelation.

Darauf aufbauend soll im zweiten Teil versucht werden, Abhängigkeiten automatisch zu modellieren und über Kreuzvalidierung zu bewerten. Hierbei ist datengetrieben eine geeignete, möglichst transparente (menschenlesbare) Wissensrepräsentation auszuwählen. Als Anre-gung seien hier Entscheidungsbäume, Regelsysteme, künstliche neuronale Netze und Ent-scheidungslisten genannt. Die Arbeit soll konkrete Wege zur Fortführung der Datenanalyse aufzeigen.

Die besondere Schwierigkeit der Arbeit liegt in der unbekannten Datenqualität, dem Umfang der Daten und insbesondere der Breite des Themas. Zur Verwendung werden Weka, Ra-pidMiner, Gnuplot, Excel, R und Matlab empfohlen.

Kolloquium: 02.10.2008

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn, Christian Kneisel

Download: A1-Poster

Diplomarbeit von Benjamin Kieper

Montag, September 29, 2008

Entwurf und Implementierung einer Anwendung zum dialogbasierten, überwachten Lernen von Objektmodellen aus Bildern

Ziel der Arbeit ist die Entwicklung einer Anwendung, die mit Hilfe von überwachtem Lernen und Bildverarbeitung, die von einer Kamera aufgenommenen Objekte erkennt und diese einer Klasse zuordnet. Das Trainieren des Klassifikators soll unter Verwendung einer einfach bedienbaren, grafischen Benutzeroberfläche durchgeführt werden können. Der Anwender hat die Aufgabe, die vom System vorgeschlagene Klassifizierung zu bewerten und gegebenenfalls zu korrigieren. Die während des Trainings entstehenden Klassifikatormodelle sollen dem Anwender dargestellt werden können.

Kolloquium: 29.09.2008

Betreuer: Prof. Dr. F. Mündemann, Dipl.-Inform. I. Boersch

Download: A1-Poster

Bachelorarbeit von Robert Fischer

Freitag, August 29, 2008

Entwicklung einer Applikation zur Layoutoptimierung von Webseiten mit evolutionären Algorithmen und interaktiver Fitness

Ziel der Arbeit ist die Untersuchung der Anwendbarkeit von interaktiver Fitness zur Verbesserung von Cascading Style Sheets durch subjektive Nutzerbewertung in einem evolutionären Optimierungsprozess. Ausgehend von der Fitnessbestimmung in evolutionären Algorithmen sind die Anwendungsindizien, Probleme und insbesondere mögliche Interaktionsvarianten mit dem menschlichen Bewerter darzustellen.

Kolloquium: 29.08.2008

Betreuer: Dipl.-Inform. I. Boersch, Prof. Dr. J. Heinsohn

Download: A1-Poster, Bachelorarbeit

Diplomarbeit von Benjamin Hoepner

Freitag, August 31, 2007

Entwurf und Implementierung einer Applikation zur Visualisierung von Lernvorgängen bei selbstorganisierenden Karten

Selbstorganisierende Karten stellen eine besondere Form von künstlichen neuronalen Netzen dar, die sich unüberwacht trainieren lassen. Ziel der Arbeit ist die Konzeption und Implementierung einer Anwendung zum Training von selbstorganisierenden Karten. Schwerpunkt ist hierbei die Darstellung des Lernverlaufs und die Visualisierung der Karte.

Ausgangspunkt der Arbeit sei die vorhandene Applikation SOMARFF [Sch06], die in ihrem Funktionsumfang zu analysieren ist. Die neue Applikation soll den bestehenden Funktionsumfang in den Bereichen Datenvorverarbeitung, Training und Visualisierungen übernehmen und weitere Visualisierungen, wie „P-Matrix“ oder „Karte im Eingaberaum“ enthalten. Zusätzlich soll der Quantisierungsfehler geeignet dargestellt werden.

Wesentliche Eigenschaften selbstorganisierender Karten sollen abstrahiert und austauschbar gestaltet werden, um es zu ermöglichen, neue Topologien, Distanzmetriken, Datenquellen und Nachbarschaftsfunktionen zu integrieren. Besonderer Wert wird dabei auf die Wiederverwendbarkeit von Modulen und Erweiterbarkeit durch neue Module gelegt. Bestandteil der Arbeit ist weiterhin eine aussagekräftige Dokumentation des Systems für Entwickler, eine Nutzeranleitung und der Nachweis der Funktionsfähigkeit des Programms durch geeignete Experimente.

Kolloqium: 31.08.2007

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn

Downloads: A1-Poster Diplomarbeit Applikation Sombrero.zip (84MB)

Überwachtes Lernen von Objektbeschreibungen aus Beispielbildern - Projekt im WS06/07

Donnerstag, März 22, 2007

Überwachtes Lernen von Objektbeschreibungen aus Beispielbildern - Projekt im WS06/07

Poster KI-Projekt WS0607 Die Idee ist einfach: ein Benutzer benennt für den Computer die Objekte, die er ihm über die Kamera zeigt, und der Computer versucht herauszufinden, woran die einzelnen Objekte erkannt werden können, bzw., wie sie sich unterscheiden. Wesentliche Freiheitsgrade bestehen hierbei in der Wahl
  • des Klassifikationsalgorithmus und
  • der Objektmerkmale.
In diesem Projekt wurden dafür
  • k-Nearest-Neighbor und
  • Median des Farbtons und Formfaktor
gewählt. Das A1-Poster findet sich hier. Auf Anfrage sind die Quelltexte und das Programm verfügbar.

Diplomarbeit von Maurice Hüllein

Montag, Dezember 18, 2006

Automatische Generierung von Bewegungsmustern für reale Roboter mit Evolutionären Algorithmen

Ziel der Arbeit ist die Untersuchung einer automatischen Erzeugung von Bewegungsmustern für gegebene Robotermorphologien am Beispiel des ELFE-Laufroboters. Hierzu ist der Stand der Forschung auf dem Gebiet des maschinellen Lernens sensomotorischer Rückkopplungen mit Gütefunktional, die möglichen Repräsentationen von Bewegungsmustern und deren Lernalgorithmen im Überblick darzustellen.

Der Schwerpunkt der Arbeit liegt in der Untersuchung der Anwendung von Evolutionären Algorithmen, insbesondere Genetischem Programmieren auf die Problemstellung. Die gewonnenen Erkenntnisse sind in ein prototypisches System mit einem realen Roboter umzusetzen. Hierbei ist auf Modularisierung und die Möglichkeit zur Weiterentwicklung Wert zu legen. Wenn möglich, sollten Hypothesen über den Evolutionsverlauf am realen System aus einer Simulation abgeleitet und im Experiment evaluiert werden.

Abgabe: 29.11.2006 Kolloqium: 18.12.2006

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn

Downloads: Diplomarbeit A1-Poster 

Diplomarbeit von Sven Schröder

Freitag, April 07, 2006

Klassifizieren und Visualisieren von Daten mit Selbstorganisierenden Karten

Ziel der Arbeit ist die Untersuchung von Visualisierungsmöglichkeiten von Daten mit Hilfe von Selbstorganisierenden Karten. Hierbei sind sowohl musterbezogene als auch musterunabhängige Varianten zu betrachten. Die Verfahren sollen prototypisch in ein Programmsystem umgesetzt werden, welches ohne Installation über das Netz nutzbar ist. Der Lernprozess ist geeignet darzustellen.

Hierzu sind Selbstorganisierende Karten im theoretischen Überblick zu beleuchten und für den Schwerpunkt Visualisierung trainierter Karten zu vertiefen. Anhand der im Verlauf der Diplomarbeit erzielten praktischen und theoretischen Erkenntnisse soll eine Bewertung und Systematisierung der Visualisierungsvarianten erstellt werden. Dabei sollen Aspekte wie Lesbarkeit, Informationsgehalt, Umsetzungskomplexität und andere Kriterien beurteilt werden.

Abgabe: 03.03.2006 Kolloqium: 07.04.2006

Betreuer: Dipl.-Inform. Ingo Boersch, Prof. Dr.-Ing. Jochen Heinsohn

Downloads: A1-Poster Diplomarbeit Vortrag

Diplomarbeit von Holger Ripp

Mittwoch, Dezember 07, 2005

Entwurf, Implementierung und Evaluation eines Verfahrens zur Detektion von Gesichtsmerkmalen in Einzelbildern mittels künstlicher neuronaler Netze

Um ein Gesicht in einem Bild automatisch zu verarbeiten (Identifikation, Verifikation usw.), ist es notwendig zu wissen, ob und wo sich ein Gesicht im Bild befindet. Dieser als Gesichtsdetektion bezeichnete Vorgang kann mit verschiedenen Ansätzen realisiert werden.

In dieser Arbeit sollte ein Verfahren entwickelt werden, welches Gesichtsmerkmale (Augen, Nase und Mund) in Einzelbildern detektieren kann. Das Gesicht sollte sich dabei in der Frontalansicht befinden und beliebig positioniert, skaliert und rotiert sein dürfen. Weiterhin sollte eine beliebige Anzahl desselben Gesichtsmerkmals (z.B. des rechten Auges) erlaubt und das Verfahren Beleuchtungsinvariant sein.

Um das gesamte Gesicht zu detektieren, müssen die einzelnen Gesichtsmerkmale anschließend kombiniert werden, was jedoch nicht Gegenstand dieser Arbeit war.

Abgabe: 08.11.2005 Kolloqium: 07.12.2005

Betreuer: Prof. Dr. rer. nat. Friedhelm Mündemann, Dipl.-Inform. Ingo Boersch

Downloads: Diplomarbeit  A!-Poster 

Studienarbeit von David Suárez Perera

Montag, September 12, 2005

Backpropagation neural network based face detection in frontal faces images

Computer vision is a computer science field belonging to artificial intelligence. The purpose of this branch is allowing computers to understand the physical world by visual media means. This document proposes an artificial neural network based face detection system. It detects frontal faces in RGB images and is relatively light invariant.

Problem description and definition are enounced in the first sections; then the neural network training process is discussed and the whole process is proposed; finally, practical results and conclusions are discussed. Process has three stages: 1) Image preprocessing, 2) Neural network classifying, 3) Face number reduction. Skin color detection and Principal Component Analysis are used in preprocessing stage; back propagation neural network is used for classifying and a simple clustering algorithm is used on the reduction stage.

Abgabe: 12.09.2005

Betreuer: Dipl.-Inform. Ingo Boersch

Downloads: Studienarbeit 

Studienarbeit von Miguel Angel Perez del Pino

Mittwoch, September 07, 2005

A Theoretical & Practical Introduction to Self Organization using JNNS

Relating to this text

During the last years of my career, the main intention of my work has been to apply neural networks to several fields of my interest, mainly networking security and biomedicine. As Dr. Carmen Paz Suárez Araujo’s, from University of Las Palmas de Gran Canaria (Spain), and Prof. Ingo Boersch’s, from Fachhochschule Brandenburg (Germany), undergraduate student I have learned how important the neurocomputing is becoming in nowadays engineering tasks. Through this path, I have gathered a variety of ideas and problems which I would have appreciated to be written or explicitly available for my personal reading and further understanding.

The employment of a simulator to develop first stage analysis and to plan further work is a must in the engineering discipline. My aim in the development of this brief textbook has been to compose a little, but well condensed manual, where the reader can get the point of self organized networks, and moreover, of Kohonen Self Organized Maps, SOM. Using JNNS, the reader will be able to apply the theoretical issues of

Kohonen networks into practical and real development of ideas.

This brief textbook is oriented to those with little experience in self organization and Kohonen networks, but also to those interested in using and analyzing the deployment of solutions with the Java Neural Network Simulator, JNNS.

Abgabe: 07.09.2005

Betreuer: Dipl.-Inform. Ingo Boersch

Downloads: Studienarbeit  Patternfiles.zip 

Studienarbeit von Miguel Angel Perez del Pino

Freitag, Juli 08, 2005

Towards an Intelligent Intrusion Detection System based on SOM Architectures

With the growth of computer networks in the recent years, security has become a crucial aspect in modern computer systems. An adequate way to detect systems misuse is based on monitoring users’ activities and network traffic. Several intrusion detection methods have been proposed but they result in an expensive implementation and doubtful yield.

In this paper, it is analyzed an approach based on the application of non-supervised auto-organizing artificial neural networks to improve the performance of real-time intrusion detection systems.

Abgabe: 08.07.2005

Betreuer: Dipl.-Inform. Ingo Boersch

Downloads: Studienarbeit 

Maschinelles Lernen am Laufroboter ELFE - KI-Projekt WS 2004/2005

Dienstag, März 01, 2005

Maschinelles Lernen am Laufroboter ELFE - KI-Projekt WS 2004/2005

ELFE-Roboter

Zusammenfassung

Es ist ein schnelles Bewegungsmuster für den elfbeinigen Roboter ELFE zu erzeugen, dazu sind verschiedene aus der Vorlesung bekannte Verfahren einzusetzen.

Projektziel

Der elfbeinige Roboter ELFE wurde konstruiert, um eine definierte Morphologie beim Testen der automatischen Erstellung von Bewegungsmustern einsetzen zu können. Insbesondere verbietet der Roboter vermutlich die manuelle Erstellung eines exzellenten Bewegungsmusters und zwingt so zu automatischen Verfahren.
Ziel des Projektes ist die Anlage einer Bibliothek ladbarer Bewegungsmuster für diesen Roboter, insbesondere zur schnellen Fortbewegung. Es ist weiter zu prüfen, ob erfolgreiche Muster durch Rotation für andere Richtungen der Bewegung anwendbar sind. Dabei sollen verschiedene Ansätze zum Einsatz kommen, ein Extrem wäre z.B. die manuelle Erzeugung eines Musters. Voraussetzung für den Vergleich ist eine Testumgebung aus Hard- und Software, die im ersten
Projektabschnitt erstellt wird.

komplette Aufgabenstellung

Ergebnisse

A1-Poster zur ELFE Der Umfang des Versuchsaufbaus war für ein Projekt zu groß, so dass als wesentliches Projektergebnis der Versuchsaufbau in Hard- und Software realisiert wurde. Es können damit automatisch Individuen im Evolutionsprozess erzeugt und auf der ELFE evaluiert werden.

Dokumentation der Lösung
A1-Poster der Projektgruppe
Kurzvortrag zur Mitte des Projektes
Film eines handcodierten Bewegungsmusters (10 MB)

Programm und Quellen (für Visual-C 6.0, AKSEN-Bibiliothek 0.965)

Diplomarbeit von Jan Derer

Dienstag, Juni 29, 2004

Evolution einer 3D-Beschreibung aus Bildern mit Hilfe von Lindenmayer-Systemen (L-Systemen)

Ziel der Arbeit ist eine Untersuchung zur automatischen Erstellung von Objektbeschreibungen aus vorgegebenen Quellbildern.

Die Objektbeschreibung erfolgt in Form von L-Systemen, die passend zu Quellbildern erzeugt werden. Hierzu wird ein evolutionärer Prozeß auf die L-Systeme angewendet. Fitnessfunktion sei die Übereinstimmung der Ansichten der erzeugten L-Systeme aus verschiedenen Kameraperspektiven mit den Originalbildern eines einfachen Gegenstandes.

Die Arbeit soll die theoretischen Grundlagen dieses Ansatzes darlegen (insbesondere Einordnung und Klassifizierung von L-Systemen und ihre Evolutionsmöglichkeiten), eine Systemarchitektur vorschlagen und in Teilen prototypisch implementieren.

Bei der Implementation soll besonderer Wert auf die Weiternutzbarkeit der erstellten Module und die Definition externer Schnittstellen gelegt werden. Die Funktionsfähigkeit des Systems ist durch geeignete Teststellungen zu evaluieren.

Abgabe: 14.06.2004 Kolloqium: 29.06.2004

Betreuer: Prof. Dr. rer. nat. Friedhelm Mündemann, Dipl.-Inform. Ingo Boersch

Downloads: A1-Poster  Diplomarbeit  Vortrag 

Diplomarbeit von Tino Schonert

Dienstag, März 11, 2003

Einsatz Evolutionärer Algorithmen zur Optimierung der Tourenplanung eines Wachschutzunternehmens

Bei der SAFE Wachschutz / Allservice Brandenburg GmbH ist man daran interessiert, die Tourenplanung für das Wachpersonal so effektiv wie möglich zu gestalten, um Zeit und Kosten zu sparen.

Das Problem stellt sich wie folgt dar: ausgehend von einem zentralen Fahrzeugdepot müssen mehrere Kunden (Wachobjekte) angefahren und kontrolliert werden. Dazu stehen im Depot mehrere Fahrzeuge zur Verfügung.

Ziel ist es, die verschiedenen Kunden auf mehrere Routen so aufzuteilen, dass die dafür benötigte Zeit und Gesamtstrecke möglichst minimal werden. Die Planung der einzelnen Touren soll durch ein rechnergestütztes Verfahren vorgenommen werden. Dazu ist eine Software-Lösung zu erstellen, welche die individuellen Anforderungen des Problems in geeigneter Art und Weise abbildet und unter Berücksichtigung sämtlicher Restriktionen möglichst effiziente Routen ermittelt.

Teilaufgaben:

  • Analyse der gegebenen Problemstellung
  • Untersuchung und Bewertung möglicher Lösungsverfahren
  • Modellierung des Wachschutzprozesses (geeignete Beschreibung von Objekten, Wachanweisungen und Zeitbedingungen)
  • Konzeption und Implementierung eines Genetischen Algorithmus zur Lösung des Tourenplanungsproblems
  • Erstellung einer benutzerfreundlichen Oberfläche (Windows-Programm)

Das Programm soll an einem konkreten Beispiel (Nachtrevier Brandenburg) getestet und die Lösungen bzgl. des Zeit- und Kostenaufwands mit den bisherigen Fahrtrouten verglichen werden.

Abgabe: 04.02.2003 Kolloqium: 11.03.2003

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Jörn Schlanert (Geschäftsführer SAFE Wachschutz / Allservice GmbH)

Downloads: Diplomarbeit  A1-Poster  Vortrag 

Diplomarbeit von Enrico Ehrich

Mittwoch, Januar 15, 2003

Qualitatives räumliches Schließen zur Objektverfolgung in Bildfolgen

Zielstellung des Themas ist die Konzeption eines Systems zur Verfolgung von Objekten in Bildfolgen. Dieses System gibt bei Anfragen an die Wissensbasis Auskunft über die möglichen Positionen der Objekte, auch wenn diese zum aktuellen Zeitpunkt von anderen Objekten verdeckt sind. Systembedingt (z.B. Verdeckung) kann die Position eines Objektes mehrdeutig sein, hierbei sind alle möglichen Positionen des Objektes unter bestimmten Randbedingungen zu verfolgen.

In der Arbeit sollen die Grundlagen für die Wissensrepräsentation räumlicher Relationen sowie des Inferenzprozesses untersucht, sowie eine Systemarchitekur für das Gesamtsystem entwickelt werden. Die Funktionalität wird über eine protoypische Implemetation der Architektur (ohne Bildaufnahme, -verarbeitung) nachgewiesen. Die Umsetzung soll besonderen Wert auf Modularisierung und Wiederverwendbarkeit legen.

Abgabe: 22.11.2002 Kolloqium: 15.01.2003

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dipl.-Inform Ingo Boersch

Downloads: Diplomarbeit  A1-Poster   Vortrag 

Diplomarbeit von Mathias Lühr

Dienstag, Juni 25, 2002

Lösung komplexer "Pickup and Delivery" Probleme unter Einbeziehung moderner Constrainttechniken

Für die Tourenplanung innerhalb der Entsorgungs- und Baubranche sollen moderne Constrainttechniken analysiert und eine Softwarebibliothek entwickelt worden. Hierzu solIte der Stand der Forschung auf den Gebieten der "Constraint-Satisfaction" und von "Constraint Systemen" einfließen und bei der Analyse der Fahrzeugplanung hinsichtlich der Anforderungen an die zu schaffende Softwarebibliothek beachtet worden.

Für die Arbeit sollten geeignete Constraint-Solver-Bibliotheken hinsichtlich des Fahrzeugroutens evaluiert und ein zweckmäßiger Constraint-Solver ausgewählt werden.

Unter Einbeziehung des gewählten Solvers stand es zur Aufgabe, eine Softwarebibliothek zu entwerfen und zu implementieren, die gegebene "Pickup and Delivery" Probleme 1öst. Die Implementierung sollte in C/C++ oder in Delphi (Objektpascal) durchgeführt werden. Dabei war zu beachten, dass die entwickelte Bibliothek von Delphi-Programmen aus nutzbar und auf dem Betriebsystem Windows NT 4 lauffähig sein musste.

Abgabe: 22.04.2002 Kolloqium: 25.06.2002

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dipl.-Ing (FH) Torsion Storrer (IVU Traffic Technologies AG)

Downloads: Diplomarbeit  A1-Poster  Vortrag 

Diplomarbeit von Rene Eggert

Donnerstag, Januar 31, 2002

Reinforcement Lernen für mobile Systeme

Zielstellung des Themas ist die Evaluation des Reinforcement-Lernens (speziell Q-Lernen) zur Anwendung in mobilen Systemen. Hierbei sollen die verschiedenen Arten der Methode theoretisch und experimentell verglichen und beispielhaft im Simulator sowie im realen Roboter umgesetzt werden. Die Anwendungsdomäne sei dabei das Erlernen eines Verhaltens zur Hindernisvermeidung mittels Sonarsensoren. Die Implementierung soll besonderen Wert auf die Wiedernutzbarkeit legen.

Abgabe: 10.01.2002 Kolloqium: 31.01.2002

Betreuer: Prof. Dr.-Ing. Jochen Heinsohn, Dipl.-Inform Ingo Boersch

Downloads: Diplomarbeit  A1-Poster  Vortrag 

Genetisches Programmieren von Spielstrategien - "4 Gewinnt"

Donnerstag, Januar 24, 2002

Sperrt man 4-Gewinnt-Programme in eine Box und startet eine Reproduktion und Selektion durch gegenseitiges Bespielen - steigt dann die Fitness der Spielprogramme? Wie kann die Fitness von Spielprogrammen absolut gemessen werden? Diese Fragen haben wir in diesem Projekt im WS01/02 beantwortet.

 A1-Poster 

Genetisches Programmieren einfacher Roboterfähigkeiten

Mittwoch, März 01, 2000

KI-Projekt WS 1999/2000 - Genetisches Programmieren einfacher Roboterfähigkeiten

Projektaufgabe How can computers learn to solve problems without being explicitly programmed?
In other words:

How can computers be made to do what is needed to be done, without being told exactly how to do it?

Arthur Samuel, 1950s

Artur Samuel formulierte damit in den 50er Jahre ein heute immer noch zentrales Problem der Informatik. Ein Ansatz zur Lösung dieses Problems ist die Genetische Programmierung.

Projektinhalt
Im KI-Projekt des 7. Semesters haben wir nun die Leistungsfähigkeit der genetischen Programmierung zum maschinellen Entdecken von Bewegungsmustern in realen autonomen Sytemen untersucht.
Das Testszenario bestand aus einem GP-System und einem realen Roboter mit zufälliger Morphologie.

Servorium mit Eyebot und Odometrie
Konkret hieß dies:
Ein zufällig zusammengeschraubtes Gebilde aus sechs Servomotoren sollte dazu gebracht werden, sich selbständig fortzubewegen.

Genetisches Programmieren einfacher Roboterfähigkeiten
(Paper und Vortrag, 4. Mechatronik-Workshop an der FH Brandenburg 9/2000)

Die Aufgabenstellung
Erstellen Sie aus 6 Servo-Motoren einen Roboter, wobei die Konstruktion zufällig entstehen soll. Finden Sie mit Hilfe der Genetischen Programmierung ein Programm, daß den Roboter befähigt, sich geradeaus vorwärts zu bewegen.

Projektteam

Gruppe 1 - Thilo Voigt, Thomas Rappe, Hr. Puchert
Gruppe 2 - Roman Zippel
Gruppe 3 - Daniel Stys, Hr. Blech (auch 2A)

Weiterlesen beim Projekt